Hierarchical Model for the Design of Microcontroller-Based Systems Protected from Cyber-Physical Attacks

Cover Page

Cite item

Full Text

Abstract

The article proposes a hierarchical model for the design of microcontroller-based systems protected from cyber-physical attacks. Within the framework of this model, a microcontroller-based system is represented as a hierarchical relational set of interacting building blocks with different properties and links between them. The proposed model includes models of hardware, software and hardware-software elements, interfaces, protocols and links between system elements, models of attacker and attack actions. The key difference of the developed model lies in the possibility of full representation of microcontroller-based systems, while other solutions have a drawback of designing such systems without taking into account the interactions of their devices with each other and other systems. In addition, the developed model is modular and extensible, aims to ensure the security of the designed solution from cyber-physical attacks, and considers security elements as an integral part of the final solution.

About the authors

D. S. Levshun

Saint-Petersburg Federal Research Center of the Russian Academy of Sciences

Email: levshun@comsec.spb.ru
ORCID iD: 0000-0003-1898-6624

References

  1. Левшун Д.С., Гайфулина Д.А., Чечулин А.А., Котенко И.В. Проблемные вопросы информационной безопасности киберфизических систем // Информатика и автоматизация. 2020. Т. 19. № 5. С. 1050‒1088. doi: 10.15622/ia.2020.19.5.6
  2. Левшун Д.С., Чечулин А.А., Котенко И.В. Жизненный цикл разработки защищенных систем на основе встроенных устройств // Защита информации. Инсайд. 2017. № 4. С. 53‒59.
  3. Котенко И.В., Чечулин А.А., Левшун Д.С. Анализ защищенности инфраструктуры железнодорожного транспорта на основе аналитического моделирования // Защита информации. Инсайд. 2017. № 6. С. 48‒57.
  4. Левшун Д.С., Чечулин А.А., Котенко И.В. Комплексная модель защищенных киберфизических систем для их проектирования и верификации // Труды учебных заведений связи. 2019. Т. 5. № 4. С. 114‒123. doi: 10.31854/1813-324X-2019-5-4-114-123
  5. Левшун Д.С., Чечулин А.А., Котенко И.В. Проектирование безопасной среды передачи данных на примере протокола I2C // Защита информации. Инсайд. 2018. № 4. С. 54‒62.
  6. Islam J., Habiba U., Kabir H., Martuza KG., Akter F., Hafiz F., et al. Design and Development of Microcontroller Based Wireless Humidity Monitor // IOSR Journal of Electrical and Electronics Engineering // 2018. Vol. 13. Iss. 2. PP. 41‒46. doi: 10.9790/1676-1302034146
  7. Sowah RA., Boahene DE., Owoh DC., Addo R., Mills G.A., Owusu-Banahene W., et al. Design of a Secure Wireless Home Automation System with an Open Home Automation Bus (OpenHAB 2) Framework // Journal of Sensors. 2020. Vol. 2020. PP. 1‒22. doi: 10.1155/2020/8868602
  8. Tebueva F.B., Rosenko A.P., Nechvoloda V.E. Development of Methods and Software Modules Security Assessment Information of Limited Distribution // Proceedings of the Young Scientist's Third International Workshop on Trends in Information Processing (YSIP3 2019, Stavropol, Russia, 17‒20th September 2019). CEUR, 2019.
  9. Mutharasu S., Divya V., Bharathi D.K., Elakkiya M.V., Janani E. Design and implementation of agrobot by using IoT // International Journal of Advance Research, Ideas and Innovations in Technology. 2019. Vol. 5. Iss. 2. PP. 10‒13.
  10. Kovtunenko A., Bilyalov A., Valeev S. Distributed Streaming Data Processing in IoT Systems Using Multiagent Soft-ware Architecture // Proceedings of the 18th International Conference on Next Generation Wired/Wireless Networking, NEW2AN 2018, and 11th Conference on Internet of Things, Smart Spaces, and Next Generation Networks and Systems, ruSMART 2018, (St. Petersburg, Russia, 27–29 August 2018). Lecture Notes in Computer Science. Vol. 11118. Cham: Springer, 2018. PP. 572‒583. doi: 10.1007/978-3-030-01168-0_51
  11. Ceken C., Abdurahman D. Simulation Modeling of An IoT Based Cold Chain Logistics Management System // Sakarya University Journal of Computer and Information Sciences. 2019. Vol. 2. Iss. 2. PP. 89‒100. doi: 10.35377/saucis.02.02.598963
  12. Ashouri M., Lorig F., Davidsson P., Spalazzese R. Edge Computing Simulators for IoT System Design: An Analysis of Qualities and Metrics // Future Internet. 2019. Vol. 11. Iss. 11. P. 235. doi: 10.3390/fi11110235
  13. Giménez P., Molína B. Palau C.E., Esteve M. SWE Simulation and Testing for the IoT // Proceedings of the International Conference on Systems, Man, and Cybernetics (Manchester, UK, 13‒16 October 2013). IEEE, 2013. PP. 356‒361. DOI:10.1109/ SMC.2013.67
  14. Andres-Maldonado P., Lauridsen M., Ameigeiras P., Lopez-Soler J.M. Analytical Modeling and Experimental Validation of NB-IoT Device Energy Consumption // IEEE Internet of Things Journal. 2019. Vol. 6. Iss. 3. PP. 5691‒5701. doi: 10.1109/JIOT.2019.2904802
  15. Udoh S.J., Srivastava V.M. Analytical Modeling of Radio Network Performance for 5G (Non-Standalone) and It's Network Connectivity // Journal of Communications. 2020. Vol. 15. Iss. 12. PP. 886‒895. doi: 10.12720/jcm.15.12.886-895
  16. Bhavana A., Nandha Kumar A.N. An Analytical Modeling for Leveraging Scalable Communication in IoT for Inter-Domain Routing // Proceedings of the Computational Methods in Systems and Software (CoMeSySo 2018, 12‒14 September 2018). Advances in Intelligent Systems and Computing. Vol. 859. Cham: Springer, 2018. PP. 1‒11. doi: 10.1007/978-3-030-00211-4_1
  17. Hu F., Lu Y., Vasilakos A.V., Hao Q., Ma R., Patil Y., et al. Robust Cyber–Physical Systems: Concept, models, and implementation // Future Generation Computer Systems. 2016. Vol. 56. PP. 449‒475. doi: 10.1016/j.future.2015.06.006
  18. Penas O., Plateaux R., Patalano S., Hammadi M. Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems // Computers in Industry. 2017. Vol. 86. PP. 52‒69. doi: 10.1016/j.compind.2016.12.001
  19. Scott-Hayward S. Design and deployment of secure, robust, and resilient SDN controllers // Proceedings of the 1st Conference on Network Softwarization (London, UK, 13‒17 April 2015). IEEE, 2015. PP. 1‒5. doi: 10.1109/NETSOFT.2015.7258233
  20. Hu F., Hao Q., Bao K. A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation // IEEE Communications Surveys & Tutorials. 2014. Vol. 16. Iss. 4. PP. 2181‒2206. doi: 10.1109/COMST.2014.2326417
  21. Lin Z., Yu S., Lü J., Cai S., Chen G. Design and ARM-Embedded Implementation of a Chaotic Map-Based Real-Time Secure Video Communication System // IEEE Transactions on Circuits and Systems for Video Technology. 2014. Vol. 25. Iss. 7. PP. 1203‒1216. doi: 10.1109/TCSVT.2014.2369711
  22. National Institute of Standards and Technology // NIST. URL: https://www.nist.gov (дата обращения 3.02.2023)
  23. Desnitsky V., Kotenko I., Chechulin A. Configuration-based approach to embedded device security // Proceedings of the 6th International Conference on Mathematical Methods, Models and Architectures for Computer Network Security (MMM-ACNS 2012, St. Petersburg, Russia, 17‒19 October 2012). Lecture Notes in Computer Science. Vol. 7531. Berlin, Heidelberg: Springer, 2012. PP. 270‒285. doi: 10.1007/978-3-642-33704-8_23
  24. UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems. 2011. URL: https://www.omg.org/spec/MARTE/1.1/PDF (дата обращения 3.02.2023)
  25. Chechulin A., Kotenko I., Desnitsky V. An Approach for Network Information Flow Analysis for Systems of Embedded Components // Proceedings of the 6th International Conference on Mathematical Methods, Models and Architectures for Computer Network Security (MMM-ACNS 2012, St. Petersburg, Russia, 17‒19 October 2012). Lecture Notes in Computer Science. Vol. 7531. Berlin, Heidelberg: Springer, 2012. PP. 146‒155. doi: 10.1007/978-3-642-33704-8_13
  26. Design of Secure and Energy-Efficient Embedded Systems for Future Internet Applications // CORDIS. URL: https://cordis.europa.eu/project/id/256668 (дата обращения 3.02.2023)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».