The Sensitivity Investigation of Fiber Optic Paths in the Framework of an Intruder Localization at a Protected Facility

Cover Page

Cite item

Full Text

Abstract

The paper considers the possibility of using communication lines already existing at urban development sites based on such information transfer technologies as «fiber-to-the-office» and «fiber-to-the-desk» in relation to the tasks of physical protection of objects. The aspects of using distributed acoustic sensors based on a phase-sensitive optical time-domain reflectometer for localizing sources of acoustic impact in real-time, that is, for determining the location of an intruder on a protected object, are considered. The sensitivity of optical paths to acoustic influences corresponding to the speech signals of the alleged intruder was assessed. An optical path based on optical fiber in an optical module with a hydrophobic filling is considered. An analysis of the spectral sensitivity of the optical fiber samples under study has been carried out. An assessment of the influence of the conditions for the passage of the route of laying the optical cable and the interaction of the acoustic sensor with the surrounding objects was carried out. The analysis of the results obtained during the test events at the experimental site was carried out.

About the authors

V. M. Kartak

Ufa State Aviation Technical University

Email: kvmail@mail.ru
ORCID iD: 0000-0001-8167-8291

O. Yu. Gubareva

Povolzhskiy State University of Telecommunications and Informatics

Email: o.gubareva@psuti.ru
ORCID iD: 0000-0003-4177-0370

M. V. Dashkov

Povolzhskiy State University of Telecommunications and Informatics

Email: mvd.srttc@gmail.com
ORCID iD: 0000-0002-3919-4151

V. O. Gureev

Povolzhskiy State University of Telecommunications and Informatics

Email: gureevvo.rabota@gmail.com
ORCID iD: 0000-0001-5148-6432

A. S. Evtushenko

Povolzhskiy State University of Telecommunications and Informatics

Email: alex2194ru@yandex.com
ORCID iD: 0000-0001-5677-7802

References

  1. Segura-Garcia J., Felici-Castell S., Perez-Solano J.J., Cobos M., Navarro J.M. Low-Cost Alternatives for Urban Noise Nuisance Monitoring Using Wireless Sensor Networks // IEEE Sensors Journal. 2015. Vol. 15. Iss. 2. PP. 836–844. doi: 10.1109/JSEN.2014.2356342
  2. Bertrand A. Applications and trends in wireless acoustic sensor networks: A signal processing perspective // Proceedings of the 18th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT, Ghent, Belgium, November 2011). IEEE, 2011. PP. 1–6. doi: 10.1109/SCVT.2011.6101302
  3. Cheng L., Wu C., Zhang Y., Wu H., Li M., Maple C. A Survey of Localization in Wireless Sensor Network // International Journal of Distributed Sensor Networks. 2012. Vol. 8. Iss. 12. P. 962523. doi: 10.1155/2012/962523
  4. Liu H., Darabi H., Banerjee P., Liu J. Survey of Wireless Indoor Positioning Techniques and Systems // IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2007. Vol. 37. Iss. 6. PP. 1067–1080. doi: 10.1109/TSMCC.2007.905750
  5. Wang H. Wireless sensor networks for acoustic monitoring. Ph.D. Theses. Los Angeles: University of California, 2006.
  6. Priyantha N.B., Chakraborty A., Balakrishnan H. The Cricket location-support system // Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom ’00, Boston, USA, 6‒11 August 2000). ACM, 2000. PP. 32–43. doi: 10.1145/345910.345917
  7. Raykar V.C., Kozintsev I.V., Lienhart R. Position calibration of microphones and loudspeakers in distributed computing platforms // IEEE Transactions on Speech and Audio Processing. 2005. Vol. 13. Iss. 1. PP. 70–83. doi: 10.1109/TSA.2004.838540
  8. Bucaro J.A., Dardy H.D., Carome E. F. Optical fiber acoustic sensor // Applied Optics. 1977. Vol. 16. Iss. 7. P. 1761. doi: 10.1364/AO.16.001761
  9. Kim B.Y., Blake J.N., Huang S.Y., Shaw H.J. Use of highly elliptical core fibers for two-mode fiber devices // Optics Letters. 1987. Vol. 12. Iss. 9. P. 729. doi: 10.1364/OL.12.000729
  10. Wang Y., Yuan H., Liu X., Bai Q., Zhang H., Gao Y., et al. A Comprehensive Study of Optical Fiber Acoustic Sensing // IEEE Access. 2019. Vol. 7. PP. 85821–85837. doi: 10.1109/ACCESS.2019.2924736
  11. Wild G., Hinckley S. Acousto-Ultrasonic Optical Fiber Sensors: Overview and State-of-the-Art // IEEE Sensors Journal. 2008. Vol. 8. Iss. 7. PP. 1184–1193. doi: 10.1109/JSEN.2008.926894
  12. Gubareva O.Y. Potential capabilities of optical distributed acoustic sensors to determine the location of an intruder // Proceedings of the 18th International Scientific and Technical Conference on Optical Technologies for Telecommunications (Samara, Russian Federation, 17‒20 November 2020). 2021. P. 33. doi: 10.1117/12.2593047
  13. Бурдин В.А., Губарева О.Ю. Способ симплексной передачи данных по оптическому волокну кабельной линии. Патент на изобретение RUS 2702983 C1 от 30.05.2019. Опубл. 14.10.2019.
  14. Treshchikov V.N. Dunay software and hardware complex. 2019. URL: https://t8.ru/wp-content/uploads/2019/01/Dunay-2019-eng.pdf.
  15. Грознов Д.И., Леонов А.В., Наний О.Е., Нестеров Е.Т., Трещиков В.Н. «Дунай» − система мониторинга активности в охранной зоне трубопровода // Экспозиция Нефть Газ. 2014. № 4(36). С. 51−53.
  16. Трещиков В.Н., Наний О.Е. Распределенный датчик акустических и вибрационных воздействий. Патент на изобретение RUS 2532562 C1 от 17.07.2013. Опубл. 10.11.2014.
  17. Blake J.N., Engan H.E., Shaw H.J., Kim B.Y. Analysis of intermodal coupling in a two-mode fiber with periodic microbends // Optics Letters 1987. Vol. 12. Iss. 4. P. 281. doi: 10.1364/OL.12.000281
  18. Gubareva O., Gureev V., Osipov O. Algorithms for Determining the Location of an Intruder Using DAS in Space // Proceedings of the VIII International Conference on Information Technology and Nanotechnology (ITNT, Samara, Russian Federation, 23‒27 May 2022). IEEE, 2022. PP. 1–6. doi: 10.1109/ITNT55410.2022.9848680
  19. Gubareva O.Y., Burdin V.A., Gureev V.O., Dashkov M.V., Gavryushin S.A., Masyuk S.S., et al. Localization method for all-dielectric fiber-optic cable // Proceedings of the XIX International Scientific and Technical Conference on Optical Technologies for Telecommunications (Samara, Russian Federation, 23‒26 November 2021). 2022. P. 27. doi: 10.1117/12.2631780
  20. Pan Z., Liang K., Ye Q., Cai H., Qu R., Fang Z. Phase-sensitive OTDR system based on digital coherent detection // Proceedings of the Conference and Exhibition on Optical Sensors and Biophotonics (Shanghai, China, 13–16 November 2011). 2011. P. 83110S. doi: 10.1364/ACP.2011.83110S
  21. Wang S., Fan X., Liu Q., He Z. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR. Optics Express. 2015. Vol. 23. Iss. 26. P. 33301. doi: 10.1364/OE.23.033301
  22. Fenta M.C., Potter D.K., Szanyi J. Fibre Optic Methods of Prospecting: A Comprehensive and Modern Branch of Geophysics // Surveys in Geophysics. 2021. Vol. 42(3). PP. 551–584. doi: 10.1007/s10712-021-09634-8
  23. Huang Y., Benesty J. Audio Signal Processing for Next-Generation Multimedia Communication Systems. Boston: Kluwer Academic Publishers, 2004. URL: http://link.springer.com/10.1007/b117685 (Accessed 29.05.2022)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies