Modeling of vapor condensation in a longitudinally finned minichannel


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heat transfer with vapor condensation inside a longitudinally finned tube is numerically studied. The proposed model considers vapor condensation on two initial flow areas, namely, annular and rivulet. The model allows prediction of pressure difference along the tube length, vapor velocity profiles in the central channel and an interfin groove, and also a velocity profile in the condensate rivulet at the bottom of the interfin channel, local heat transfer coefficients at different fin points, and average heat transfer coefficients over tube section and length. The calculations showed that in the case of vapor condensation in longitudinally finned tubes of a small diameter it is of fundamental importance to divide the flow tube section into a central channel and interfin channels. The governing vapor velocities in these channels may differ by more than an order of magnitude. The reduced vapor velocity, used in engineering calculations, does not reflect the character of dynamic vapor impact on a condensate film on the most part of the heat transfer surface. For tubes with relatively large fins the proposed model describes vapor condensation almost completely,meanwhile, the mass vapor quality by the time of filling of the grooves reaches 0.01–0.05. The highest heat transfer intensification was obtained for “sharp fins” with a high value of the fin head curvature. Comparison of results of calculation by the model with results of the known experiments on water vapor condensation yields a good qualitative and quantitative agreement for low vapor velocities at the channel inlet (under 30 m/s). The wall thermal conductivity coefficient value affects significantly the condensation efficiency.

About the authors

I. V. Marchuk

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Author for correspondence.
Email: marchuk@itp.nsc.ru
Russian Federation, pr. Akad. Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

E. A. Chinnov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: marchuk@itp.nsc.ru
Russian Federation, pr. Akad. Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

O. A. Kabov

Kutateladze Institute of Thermophysics, Siberian Branch; Novosibirsk State University

Email: marchuk@itp.nsc.ru
Russian Federation, pr. Akad. Lavrent’eva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.