Interval-stochastic thermal processes in electronic systems: Modeling in practice


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Mathematical and computer modeling of thermal processes, applied presently in thermal design of electronic systems, is based on the assumption that the factors determining the thermal processes are completely known and uniquely determined, that is, they are deterministic. Meanwhile, practice shows that the determining factors are of indeterminate interval-stochastic character. Moreover, thermal processes in electronic systems are nonstationary and nonlinearly depend on both the stochastic determining factors and the temperatures of electronics elements and environment. At present, the literature does not present methods of mathematical modeling of nonstationary, stochastic, nonlinear, interval-stochastic thermal processes in electronic systems to model thermal processes, which satisfy all the above-listed requirements to modeling adequacy. The present paper develops a method of mathematical and computer modeling of the nonstationary interval-stochastic nonlinear thermal processes in electronic systems. The method is based on obtaining equations describing the dynamics of time variation of statistical measures (expectations, variances, covariances) of temperature of electronic systemelements with given statistical measures of the initial interval-stochastic determining factors. A practical example of applying the developed approach to a the real electronic system is given.

作者简介

A. Madera

Scientific Research Institute of System Analysis

编辑信件的主要联系方式.
Email: agmprof@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017