Experimental Study of Regularities in Suppression of Flame Combustion and Thermal Decomposition of Forest Combustible Materials Using Aerosols of Different Dispersiveness


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents results of experimental studies on the heat and mass transfer and phase transformations in suppression of thermal decomposition and flame combustion of a group of typical forest combustible materials (leaves and needles used as examples) due application of water aerosol and a group of droplets of a fixed total volume. The main attention is paid to the experimentally found effect of aerosol dispersiveness (via variation in the concentration and size of droplets) on the integral characteristics of the heat and mass transfer processes and phase transformations. The effective irrigation density, the minimum (necessary and sufficient) volume, and the respective specific water consumption for complete termination of destruction of forest combustible materials are calculated. Three most typical schemes of sprayed liquid interaction with the surface of forest combustible material under intensive pyrolysis are considered with the aim of establishing conditions for inhibition, localization, and complete cessation of the process of destruction of forest combustible materials. Dependencies illustrating how the properties and structure of layers of forest combustible materials affect the characteristics of these processes are established.

About the authors

A. O. Zhdanova

National Research Tomsk Polytechnic University

Author for correspondence.
Email: zhdanovaao@tpu.ru
Russian Federation, pr. Lenina 30, Tomsk, 634050

G. V. Kuznetsov

National Research Tomsk Polytechnic University

Author for correspondence.
Email: kuznetsovgv@tpu.ru
Russian Federation, pr. Lenina 30, Tomsk, 634050

P. A. Strizhak

National Research Tomsk Polytechnic University

Author for correspondence.
Email: pavelspa@tpu.ru
Russian Federation, pr. Lenina 30, Tomsk, 634050

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.