Quantitative indicators of TREC and KREC as predictors of the severity of acute respiratory infections in children

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. TREC (T-cell Receptor Excision Circle) and KREC (Kappa-deleting Recombination Excision Circle) are markers of lymphocyte production and indirectly reflect the state of the adaptive immune system. Their concentration in dried blood spots can be determined by quantitative polymerase chain reaction (qPCR). Currently, these markers are used for neonatal screening of primary immunodeficiency conditions.

Objective: To assess TREC and KREC levels in children aged 1 to 17 years with acute respiratory infections to predict disease severity.

Material and methods. A retrospective study was conducted at Children’s City Clinical Hospital No.9 named after G.N. Speransky. The study included 180 children with acute respiratory infections (105 with community-acquired pneumonia; 75 with acute respiratory viral infections) and 90 healthy children as a control group. TREC and KREC concentrations were determined in dried venous blood spots using quantitative real-time PCR.

Results. TREC and KREC concentrations in children with acute respiratory infections were statistically significantly lower compared to the control group (p < 0.05). The discriminatory ability of TREC concentration was higher than that of KREC (TREC: AUC > 0.84 for all age groups; KREC: AUC 0.73 – 0.79). Children with the lowest TREC levels (first quartile) were hospitalized earlier from disease onset and had longer hospital stays. The lowest TREC levels were associated with higher incidence of respiratory failure and elevated C-reactive protein levels.

Conclusion. Children with acute respiratory infections show statistically significant reduction in both TREC and KREC concentrations. Low TREC levels are prognostically unfavorable factors associated with more severe disease course.

About the authors

Ekaterina V. Ligskaya

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: ligskaya_e_v@staff.sechenov.ru
ORCID iD: 0009-0006-1262-8518

Assistant, Department of Pediatrics and Pediatric Infectious Diseases, Filatov Clinical Institute of Children’s Health

Russian Federation, Trubetskaya str., 8/2, Moscow, 119991

Alina V. Eremeeva

Sechenov First Moscow State Medical University (Sechenov University)

Email: eremeeva_a_v@staff.sechenov.ru
ORCID iD: 0000-0002-2892-4665

Professor, Department of Pediatrics and Pediatric Infectious Diseases, Filatov Clinical Institute of Children’s Health

Russian Federation, Trubetskaya str., 8/2, Moscow, 119991

Dmitry A. Kudlay

Sechenov First Moscow State Medical University (Sechenov University); Institute of Immunology Federal Medical-Biological Agency; Lomonosov Moscow State University

Email: d624254@gmail.com
ORCID iD: 0000-0003-1878-4467

Doctor of Medical Sciences, Corresponding Member of the Russian Academy of Sciences, Professor, Department of Pharmacology, Institute of Pharmacy; Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology; Deputy Dean for Scientific and Technological Development, Faculty of Bioengineering and Bioinformatics, Senior Researcher, Faculty of Bioengineering and Bioinformatics

Russian Federation, Trubetskaya str., 8/2, Moscow, 119991; Kashirskoe shosse, 24, Building 2, Moscow, 115478; Leninskie Gory, 1, Moscow, 119991

Oleg V. Satyshev

Autonomous Non-Profit Organization of Additional Professional Education «Institute of Professional Education in Healthcare and Social Development»

Email: satyshev@mail.ru
ORCID iD: 0000-0002-4407-7558

Candidate of Medical Sciences, Leading Researcher

Russian Federation, Mendeleeva Street, 217/1, Ufa, 450098

Maria A. Gordukova

G.N. Speransky City Children’s Clinical Hospital No. 9

Email: GordukovaMA@zdrav.mos.ru
ORCID iD: 0000-0002-3948-8491

Candidate of Biological Sciences, Biologist, Clinical Diagnostic Laboratory

Russian Federation, Shmitovsky pr., 29, Moscow, 123317

Anatoly A. Korsunsky

Sechenov First Moscow State Medical University (Sechenov University); G.N. Speransky City Children’s Clinical Hospital No. 9

Email: korsunskiy_a_a@staff.sechenov.ru
ORCID iD: 0000-0002-9087-1656

Head of the Department of Pediatrics and Pediatric Infectious Diseases, Filatov Clinical Institute of Children’s Health

Russian Federation, Trubetskaya str., 8/2, Moscow, 119991; Shmitovsky pr., 29, Moscow, 123317

References

  1. Zar H.J., Ferkol T.W. The global burden of respiratory disease – Impact on child health. Pediatric Pulmonology. 2014; 49 (5): 430–4. doi: 10.1002/ppul.23030
  2. Rodrigues C.M.C., Groves H. Community-Acquired Pneumonia in Children: the Challenges of Microbiological Diagnosis. J. of Clinical Microbiology. 2018; 56 (3): e01318–17. doi: 10.1128/JCM.01318-17
  3. Овсянников Д.Ю., Бойцова Е.В., Стуклов Н.И. и др. Оториноларингология, пульмонология, гематология, иммунология. В: Овсянников Д.Ю., ред. Педиатрия: учебник: в 5 томах. Т. 2. Москва: РУДН, 2022; 592. [Ovsyannikov D.Y., Boytsova E.V., Stuklov N.I. et al. Otorhinolaryngology, pulmonology, hematology, immunology. In: Ovsyannikov D.Y., ed. Pediatrics: textbook: in 5 volumes. Vol. 2. Moscow: RUDN, 2022; 592 (in Russian)]
  4. Bender R.G., Sirota S.B., Swetschinski L.R., Dominguez R.M.V., Novotney A., Wool E.E. et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: a systematic analysis from the Global Burden of Disease Study 2021. The Lancet Infectious Diseases. 2024; 24 (9): 974–1002. doi: 10.1016/S1473-3099(24)00176-2
  5. Korkmaz F.T., Traber K.E. Innate immune responses in pneumonia. Pneumonia. 2023; 15 (1): 1–26. doi: 10.1186/s41479-023-00106-8
  6. Ryanto G.R.T., Suraya R., Nagano T. The Importance of Lung Innate Immunity During Health and Disease. Pathogens. 2025; 14 (1): 91. doi: 10.3390/pathogens14010091
  7. Norris P.A.A., Kubes P. Innate immunity of the lungs in homeostasis and disease. Mucosal Immunology. 2025. doi: 10.1016/j.mucimm.2025.02.001
  8. Hoffmann J., MacHado D., Terrier O., Pouzol S., Messaoudi M., Basualdo W. et al. Viral and bacterial co-infection in severe pneumonia triggers innate immune responses and specifically enhances IP-10: a translational study. Scientific Reports. 2016; 6: 38532. doi: 10.1038/srep38532
  9. Лигская Е.В., Корсунский А.А., Еремеева А.В., Сатышев О.В., Кудлай. Роль иммунного ответа в развитии гипоксических осложнений респираторных инфекций нижних дыхательных путей у детей. Педиатрия им. Г.Н. Сперанского. 2024; 103 (4): 142–50. [Ligskaya E.V., Korsunskiy A.A., Eremeyeva A.V., Satyshev O.V., Kudlay D.A. Immune response and the hypoxic complications of lower respiratory tract respiratory infections development in children. A bibliographical review. Pediatria n.a. G.N. Speransky. 2024; 103 (4):142–50. doi: 10.24110/0031-403X-2024-103-4-142-150 (in Russian)]
  10. Гордукова М.А., Оскорбин И.П., Мишукова О.В., Кудлай Д.А., Воронин С.В., Кудрявцев И.В. и др. Разработка набора реагентов для количественного определения молекул ДНК TREC и KREC в цельной крови и сухих пятнах крови методом мультиплексной ПЦР в режиме реального времени. Медицинская иммунология. 2015; 17 (5): 467–78. [Gordukova M.A., Oskorbin I.P., Mishukova O.V., Kudlay D.A., Voronin S.V., Kudryavtsev I.V. et al. Development of a reagent kit for quantitative detection of TREC and KREC DNA molecules in whole blood and dried blood spots by multiplex real-time PCR. Meditsinskaya Immunologiya. 2015; 17 (5): 467–78. doi: 10.15789/1563-0625-2015-5-467-478 (in Russian)]
  11. Korsunskiy I., Blyuss O., Gordukova M., Davydova N., Gordleeva S., Molchanov R. et al. TREC and KREC levels as a predictors of lymphocyte subpopulations measured by flow cytometry. Frontiers in Physiology. 2019; 10: 8. doi: 10.3389/fphys.2019.00008
  12. Воронин С.В., Захарова Е.Ю., Байдакова Г.В., Поляков А.В., Курбатова Л.А., Лаврова О.В. и др. Расширенный неонатальный скрининг на наследственные заболевания в России: первые итоги и перспективы. Педиатрия им. Г.Н. Сперанского. 2024; 103 (1): 16–29. [Voronin S.V., Zakharova E.Y., Baidakova G.V., Polyakov A.V., Kurbatova L.A., Lavrova O.V. et al. Expanded neonatal screening for hereditary diseases in Russia: first results and prospects. Pediatria named after G.N. Speransky. 2024; 103 (1): 16–29. doi: 10.24110/0031-403X-2024-103-1-16-29 (in Russian)]
  13. Корсунский И.А., Продеус А.П., Румянцев А.Г., Гордукова М.А., Корсунский А.А., Кудлай Д.А., Филипенко М.Л., Шустер А.М. Скрининг новорожденных на первичные иммунодефициты и группу риска иммунорегуляторных расстройств, требующих диспансерного наблюдения. Педиатрия им. Г.Н. Сперанского. 2019; 98 (3): 49–54. [Korsunsky I.A., Prodeus A.P., Rumyantsev A.G., Gordukova M.A., Korsunsky A.A., Kudlay D.A., Filipenko M.L., Schuster A.M.. Screening of newborns for primary immunodeficiencies and risk groups for immunoregulatory disorders requiring follow-up. Pediatria named after G.N. Speransky. 2019; 98 (3): 49–54. doi: 10.24110/0031-403X-2019-98-3-49-54 (in Russian)]
  14. Корсунский И.А., Кудлай Д.А., Продеус А.П., Щербина А.Ю., Румянцев А.Г. Неонатальный скрининг на первичные иммунодефицитные состояния и Т-/В-клеточные лимфопении как основа формирования групп риска детей с врожденными патологиями. Педиатрия им. Г.Н. Сперанского. 2020; 99 (2): 8–15. [Korsunsky D.A., Kudlay A.P., Prodeus A.Yu., Shcherbina A.G., Rumyantsev A.G. Neonatal screening for primary immunodeficiency and Т-/B-cell lymphopenia as the basis for the formation of risk groups for children with congenital pathologies. Pediatria named after G.N. Speransky. 2020; 99 (2): 8–15. doi: 10.24110/0031-403X-2020-99-2-8-15 (in Russian)]
  15. Söderström A., Vonlanthen S., Jönsson-Videsäter K., Mielke S., Lindahl H., Törlén J. et al. T cell receptor excision circles are potential predictors of survival in adult allogeneic hematopoietic stem cell transplantation recipients with acute myeloid leukemia. Frontiers in Immunology. 2022; 13: 1024835. doi: 10.3389/fimmu.2022.1024835
  16. Веселова Е.И., Каминский Г.Д., Карамов Э.В., Говоров Р.Б., Амосова Е.А., Голиусов И.С. и др. Эффективность и безопасность лечения ВИЧ-инфекции с переходом на битерапию после 24 нед. тритерапии. Инфекционные болезни: новости, мнения, обучение. 2021; 10 (4): 66–75. [Veselova E.I., Kaminsky G.D., Karamov E.V., Govorov R.B., Amosova E.A., Goliusov I.S. et al. Efficacy and safety of switching to dual therapy after 24 weeks of triple therapy in HIV infection. Infectious Diseases: News, Opinions, Training. 2021; 10 (4): 66–75. doi: 10.33029/2305-3496-2021-10-4-66-75 (in Russian)]
  17. Смердин С.В., Аксенова В.А., Плеханова М.А., Кондратьева Е.И., Кудлай Д.А., Кудрявцев И.В. TREC и KREC – перспективные маркеры активности туберкулезной инфекции. Педиатрия им. Г.Н. Сперанского. 2022; 101 (6): 73–81. [Smerdin S.V., Aksenova V.A., Plekhanova M.A., Kondratyeva E.I., Kudlay D.A., Kudryavtsev I.V. TREC and KREC as promising markers of tuberculosis infection activity. Pediatria named after G.N. Speransky. 2022; 101 (6): 73–81. doi: 10.24110/0031-403X-2022-101-6-73-81 (in Russian)]
  18. Elena D, Mumba MB, Andrey P, Dmitry O, Marina K, Olga A, Dmitry K, Alexey K, Inessa N, Tatyana R, Margarita T, Iliya K. The Role of Immune Markers in Predicting Infectious Complications in Children with Congenital Heart Defects. Curr Pediatr Rev. 2025. doi: 10.2174/0115733963325523250320065040.
  19. Kashatnikova D.A., Khadzhieva M.B., Kolobkov D.S., Belopolskaya O.B., Smelaya T.V., Gracheva A.S. et al. Pneumonia and Related Conditions in Critically Ill Patients–Insights from Basic and Experimental Studies. International Journal of Molecular Sciences. 2022; 23 (17): 9896. doi: 10.3390/ijms23179896
  20. Savchenko A.A., Tikhonova E., Kudryavtsev I., Kudlay D., Korsunsky I., Beleniuk V. et al. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses. 2022; 14 (3): 646. doi: 10.3390/v14030646
  21. Kwok J.S.Y., Cheung S.K.F., Ho J.C.Y., Tang I.W.H., Chu P.W.K., Leung E.Y.S. et al. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Frontiers in Immunology. 2020; 11: 550221. doi: 10.3389/fimmu.2020.550221
  22. Hosseini A., Kakhki S.M.T., Kiani S.J., Ramezani A. Determining Laboratory Reference Values of TREC and KREC in Different Age Groups of Iranian Healthy Individuals. Iranian Journal of Allergy, Asthma and Immunology. 2020; 19 (5): 544–54. doi: 10.18502/ijaai.v19i5.4468
  23. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2023 году: Государственный доклад. Москва: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. 2024; 364. [On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2023: State Report. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. 2024; 364 (in Russian)]
  24. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2024 году: Государственный доклад. Москва: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. 2025; 424. [On the State of Sanitary and Epidemiological Wellbeing of the Population in the Russian Federation in 2024: State Report. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. 2025; 424 (in Russian)]

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).