THE POSSIBILITIES OF USING PHAGE THERAPY IN DENTISTRY


如何引用文章

全文:

详细

The article is devoted to the possibilities of using bacteriophages in dentistry. The main characteristics of bacteriophages and mechanisms of their interaction with a bacterial cell as well as the data of microbiological studies and the results of clinical use of bacteriophages in periodontal diseases are discussed. Bacteriophages have been shown to be effective against periodontopathogenic microorganisms, including antibiotic resistant bacteria in vitro and in vivo. There were reflected the advantages and disadvantages of phage therapy, the main of which for today is a small experience of clinical use of this method. Objective. To analyze the data of foreign and domestic literature and publications in the field of phagotherapy effectiveness in dentistry.

作者简介

Maria Kuchmina

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: marya.kuchmina@yandex.ru
student of the Department of General Dentistry, Faculty of Dentistry I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) 199911, Moscow

A. Turkina

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

199911, Moscow

Yu. Paramonov

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

199911, Moscow

参考

  1. Асланов Б.И. Бактериофаги - эффективные антибактериальные средства. Медицинский совет. 2015; 13: 106-9
  2. Ackermann H.W., Prangishvili D. Prokaryote viruses studied by electron microscopy. Arch. Virol. 2012; 157: 1843-9. doi: 10.1007/s00705-012-1383-y.
  3. Sulakvelidze A. Bacteriophage: A new journal for the most ubiquitous organisms on Earth. Bacteriophage. 2011; 1: 1-2. doi: 10.4161/bact.1.1.15030.
  4. Адамс М. Бактериофаги. М.: Медгиз; 2000. В 2000 г.
  5. Госманов Р.Г., Колычев Н.М. Ветеринарная вирусология. М.: КолосС; 2006
  6. Тикунова Н.В., Власов В.В. Бактериофаги - враги наших врагов. Наука из первых рук. 2013. 2(50): 58-69
  7. Weinbauer M.G. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004; 28(2): 127-81
  8. Алешкин А.В. Опыт применения лечебных бактериофагов при гнойновоспалительных заболеваниях ЛОР-органов. Медицинский совет. 2015; 97:
  9. Плахтий Л.Я., Бекмурзова А.И., Валиева М.В., Еналдиева Д.А., Черт-коева М.Г., Цаллагов А.К. Качественный состав микробных ассоциаций пародонтального кармана у больных пародонтитом. Фундаментальные исследования. 2006; 8: 81-2.
  10. Donlan R.M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009; 17(2): 66-72. doi: 10.1016/j.tim.2008.11.002. Epub 2009 Jan 21.
  11. Fenton M., Ross P., McAuliffe O., O'Mahony J., Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs. 2010; 1(1): 9-16. doi: 10.4161/ bbug.1.1.9818.
  12. Szafranski S.P., Winkel A., Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J. Biotechnol. 2017; 250(20): 29-44. doi: 10.1016/j. jbiotec.2017.01.002.
  13. Machuca P, Daille L., Vines E., Berrocal L., Bittner M. Isolation of a novel bac teriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl Environ Microbiol. 2010; 76(21): 7243-50. doi: 10.1128/AEM.01135-10.
  14. Fujiki J., Nakamura T., Furusawa T., Ohno H., Takahashi H., Kitana J. et al. Char acterization of the Lytic Capability of a LysK-Like Endolysin, Lys-phiSA012, Derived from a Polyvalent Staphylococcus aureus Bacteriophage. Pharmaceuticals (Basel). 2018; 24, 11(1). pii: E25. doi: 10.3390/ph11010025.
  15. Keary R., Sanz-Gaitero M., van Raaij M.J., O'Mahony J., Fenton M., McAuliffe O. et al. Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus. Curr. Protein Pept. Sci. 2016; 17(2): 183-90. PMID: 26521950
  16. Lin D.M., Koskella B., Lin H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest Pharmacol Ther. 2017; 8(3): 162-73. doi: 10.4292/wjgpt.v8.i3.162.
  17. Latz S., Kruttgen A., Hafner H., Buhl E.M., Ritter K., Horz H.P Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions. Viruses. 2017; 9(11): pii: E315. doi: 10.3390/v9110315.
  18. Santiago-Rodriguez T.M., Naidu M., Abeles S.R., Boehm T.K., Ly M., Pride D.T. Transcriptome analysis of bacteriophage communities in periodontal health and disease. BMC Genomics. 2015; 16: 549. doi: 10.1186/s12864-015-1781-0.
  19. Исаджанян К.Е. Использование фаготерапии в стоматологии. Вебконференция от НПЦ «МикроМир»; 2016
  20. Pinto G., Silva M.D., Peddey M., Sillankorva S., Azeredo J. The role of bacteriophages in periodontal health and disease. Future Microbiol. 2016; 11: 1359-69. PMID: 27633580 doi: 10.2217/fmb-2016-0081
  21. Wittebole X., De Roock S., Opal S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014; 5(1): 226-35. doi: 10.4161/viru.25991
  22. Drulis-Kawa Z., Majkowska-Skrobek G., Maciejewska B., Delattre A.S., Lavigne R. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr. Protein Pept Sci. 2012; 13: 699-722. doi: 10.2174/138920312804871193.
  23. Gorski A., Miedzybrodzki R., Borysowski J., Weber-Dabrowska B., Lobocka M., Fortuna W. et al. Bacteriophage therapy for the treatment of infections. Curr. Opin Investig Drugs. 2009; 10: 766-74.
  24. Preus H.R., Olsen I., Gjermo P. Bacteriophage infection-a possible mechanism for increased virulence of bacteria associated with rapidly destructive periodontitis. PMID: 3471034
  25. Preus H.R., Olsen I., Namork E. Association between bacteriophage-infected Actinobacillus actinomycetemcomitans and rapid periodontal destruction. PMID: 3473090.
  26. Sandmeier H, van Winkelhoff AJ, Bar K, Ankli E, Maeder M, Meyer J. Temperate bacteriophages are common among Actinobacillus actinomycetem-comitans isolates from periodontal pockets. J. Periodontal Res. 1995; 30(6): 418-25.
  27. Merabishvili M., Pirnay J.P., Verbeken G., Chanishvili N., Tediashvili M., Lashkhi N. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 2009; 4: e4944. doi: 10.1371/ journal.pone.0004944.
  28. Pirnay J.P., De Vos D., Verbeken G., Merabishvili M., Chanishvili N., Vaneechoutte M. et al. The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm. Res. 2011; 28: 934-7. doi: 10.1007/s11095-010-0313-5.
  29. Brabban A.D., Hite E., Callaway T.R. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis. 2005; 2: 287-303. doi: 10.1089/fpd.2005.2.287.
  30. O'Shea Y.A., Boyd E.F. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol Lett. 2002; 214: 153-7. doi: 10.1111/j.1574-6968.2002.tb11339.x.
  31. Maiques E., Ubeda C., Tormo M.A., Ferrer M.D., Lasa I., Novick R.P., Penades J.R. Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J. Bacteriol. 2007; 189: 5608-16. doi: 10.1128/JB.00619-07.
  32. Hatfull G.F. Bacteriophage genomics. Curr. Opin Microbiol. 2008; 11: 447-53. doi: 10.1016/j.mib.2008.09.004.
  33. Goodridge L.D. Designing phage therapeutics. Curr. Pharm. Biotechnol. 2010; 11: 15-27. doi: 10.2174/138920110790725348.
  34. Dabrowska K., Switaia-Jelen K., Opolski A., Weber-Dabrowska B., Gorski A. Bacteriophage penetration in vertebrates. J. Appl. Microbiol. 2005; 98: 7-13. doi: 10.1111/j.1365-2672.2004.02422.x.
  35. Liu M., Deora R., Doulatov S.R., Gingery M., Eiserling F.A., Preston A. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. 2002; 295: 2091-4. doi: 10.1126/science.1067467.
  36. Riede I., Eschbach M.L. Evidence that TraT interacts with OmpA of Escherichia coli. FEBS Lett. 1986; 205: 241-5. doi: 10.1016/0014-5793-(86)80905-X.
  37. Kutter E., De Vos D., Gvasalia G., Alavidze Z., Gogokhia L., Kuhl S., Abedon S.T. Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol. 2010; 11: 69-86. doi: 10.2174/138920110790725401.

版权所有 © Eco-Vector, 2018


 


##common.cookie##