СРАВНИТЕЛЬНАЯ ОЦЕНКА ФИЗИКО-ХИМИЧЕСКИХ ХАРАКТЕРИСТИК АЛЛОГЕННЫХ БИОМАТЕРИАЛОВ И АУТОГЕННОЙ КОСТИ


Цитировать

Полный текст

Аннотация

Аллогенные, ксеногенные и синтетические костнозамещающие материалы используются в хирургической стоматологии для компенсации костной резорбции и поддержания процесса заживления кости за счёт стимуляции костеобразования в области дефекта. Цель настоящего исследования - оценить физические и химические свойства ряда аллогенных биоматериалов и сопоставить их со свойствами аутогенной кости. Изучена аутогенная кость и 5 различных аллогенных биоматериалов - путём рентгенологических исследований, атомно-абсорбционной спектрометрии и лазерной дифрактометрии. Оценивались такие параметры, как химический состав, концентрация высвобождаемого кальция, кристалличность и размер гранул.

Об авторах

А. Бербери

Ливанский университет

г. Бейрут, Ливия

Малкан Абдрашидовна Амхадова

ФУВ МОНИКИ им. Владимирского

Email: amkhadova@mail.ru
д-р мед. наук, зав. кафедрой хирургической стоматологии и имплантологии МОНИКИ им. Владимирского 129110, г. Москва, Россия

А. Самарани

Ливанский университет

г. Бейрут, Ливия

Ж. Аун

Ливанский университет

г. Бейрут, Ливия

Список литературы

  1. Kay M.I., Young R.A., Posner A.S. Crystal Structure Of Hydroxyapatite. Nature. 1964; 12: 1050-2.
  2. Ripamonti U., Klar R.M. Regenerative frontiers in craniofacial reconstruction: grand challenges and opportunities for the mammalian transforming growth factor-P proteins. Front Physiol. 2010; 11:143. doi: 10.3389/fphys.2010.00143.
  3. Le Geros R. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008; 108: 4742-53.
  4. Hanawa T., Kamiura Y., Yamamoto S., Kohgo T., Amemiya A. et al. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J. Biomed. Mat. Res. 1997; 36: 131-6.
  5. Sul Y.T., Byon E.S., Joeng Y. Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant. Clin. Impl. Dent. Relat. Res. 2004; 6: 101-10.
  6. Frojd V., Franke-Stenport V, Meirelles L., Wennerberg A. Increased bone contact to a calcium-incorporated oxidizedcommercially pure titanium implant: an in-vivo study in rabbits. Int. J. OralMaxillofac. Surg. 2008; 37: 561-6. doi: 10.1016/j.ijom.2008.01.020.
  7. Kang B.S., Sul Y.T., Johansson C.B., Oh S.J., Albrektsson T. The effect of calcium ion concentration on the bone response to oxidized titanium implants. Clin. Oral. Impl. Res. 2012; 23: 690-7.
  8. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J. Nippon Med. Sch. 2010; 77: 4-12.
  9. Hari Reddi A. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 1998; 16: 247-52.
  10. Kenley R.A., Yim K., Abrams J., Ron E., Turek T., Marden L.J., Hollinger J.O. Biotechnology and bone graft substitutes. Pharma-ceut. Res. 1993; 10: 1393-401.
  11. Block M.S., Kent J.N. Sinus augmentation for dental implants: the use of autogenous bone. J. Oral Maxil. Surg. 1997; 55: 1281-6.
  12. Wheeler S.L. Sinus augmentation for dental implants: the use of al-loplastic materials. J. Oral Maxil. Surg. 1997; 55: 1287-93.
  13. Greenwald A.S., Boden S.D., Goldberg V.M., Khan Y., Laurencin C.T., Rosier R.N. Bone-graft substitutes: Facts, fictions, and applications. J. Bone Joint Surg. Am. 2001; 83: 98-103.
  14. Parikh S.N. Bone graft substitutes: Past, present, future. J. Postgrad. Med. 2002; 28: 142-8.
  15. Finkemeier C.G. Bone grafting and bone-graft substitutes. J. Bone Joint Surg. Am. 2002; 84: 454-64.
  16. Sandor G.K.B., Lindholm T.C., Clokie C.M.L. Bone regeneration of the cranio-maxillofacial and dento-alveolar skeletons in the framework of tissue engineering. In: N. Ashammakhi, P. Ferretti, Ed.: Topics in Tissue Engineering. 2003; chp 7: 1-46.
  17. Ben-Nissan B. Natural bioceramics: From coral to bone and beyond. Curr. Opin. Solid State Mater Sci. 2003; 7: 283-8.
  18. Vallet-Regi M., Gonzales-Calbet J.M. Calcium phosphate as substitution of bone tissues. Progress in solide state chemistry. 2004; 32: 1-31.
  19. Hing A.K., Wilson F.L., Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007; 7: 475-90.
  20. Rueger J.M., Linhart W., Sommerfeldt D. Biologic reactions to calcium phosphate ceramic implantations. Results of animal experiments. Orthopade. 1998; 27: 89-95.
  21. Bohner M. Calcium orthophosphates in medicine: From ceramics to calcium, phosphate cements. Injury. 2000; 31: 37-47.
  22. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine J. 2001; 10: 114-21.
  23. Bouchlariotou I., Bernard J.P., Carrel J.P., Vazquez L. Long-term stability of osseointegrated implants in bone regenerated with a collagen membrane in combination with a deproteinized bovine bone graft: 5-year follow-up of 20 implants. POSEIDO. 2013; 1: 45-53.
  24. Toeroek R., Dohan Ehrenfest D.M. The concept of Screw-Guided Bone Regeneration (S-GBR). Part 3: Fast Screw-Guided Bone Regeneration (FS-GBR) in the severely resorbed preimplant posterior mandible using allograft and Leukocyte- and Platelet-Rich Fibrin (L-PRF): a 4-year follow-up. POSEIDO. 2013; 2: 93-100.
  25. Toeroek R., Dohan Ehrenfest D.M. The concept of Screw-Guided Bone Regeneration (S-GBR). Part 2: S-GBR in the severely resorbed preimplant posterior mandible using bone xenograft and Leukocyte-and Platelet-Rich Fibrin (L-PRF): a 5-year follow-up. POSEIDO vol. 2, pp. 85-92, 2013.
  26. Sung H.J., Meredith C., Johnson C., Galis Z.S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials, 2004; 25: 5735-42.
  27. Glowacki J. A review of osteoinductive testing methods and sterilization processes for demineralized bone. Cell Tissue Bank. 2005; 6: 3-12.
  28. Moore S.T., Katz J.M., Zhukauskas R.M., Hernandez R.M., Lewis C.S., Supronowicz P.R. et al. Osteoconductivity and osteoinductivity of Puros(R) DBM putty. J. Biomater Appl. 2011; 26: 151-71. doi: 10.1177/0885328210366061. Epub 2010.
  29. Traini T., Piatelli A., Caputi S., Degidi M., Mangano C. et al. Regeneration of human bone using different bone substitute biomaterials. Clin. Imp. Dent. RelaRes. 2013. doi: 10.1111/cid.12089.
  30. Klein C.P., Driessen A.A., de Groot K., van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater Res. 1983; 17: 769-84.
  31. Irinakis T. Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J. OralMaxillofac. Surg. 2011; 69: 134-41. doi: 10.1016/j. joms.2010.07.028. Epub 2010 Nov 2.
  32. Schmitt C.M., Doering H., Schmidt T., Lutz R., Neukam F.W., Schlegel K.A. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin. Oral Implants Res. 2013; 24: 576-85. doi: 10.1111/j.1600-0501.2012.02431.x. Epub 2012 Feb 13.
  33. Peters F., Scwarz K., Epple M. The structure of bone studied with synchroton X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. ThermochimicaActa. 2000; 361: 131-8.
  34. Figueiredo M., Henriques J., Martins G., Guerra F., Judas F., Figue-iredo H. physicochemical characterization of biomaterials commonly used in dentistry as bone substitues-comparison with human bone. J. Biomed. Mater. Res. part B: Appl Biomater. 2010; 92B: 409-19.
  35. García R., Báez A.P. Atomic Absorption Spectrometry (AAS), Atomic Absorption Spectroscopy, Dr. Muhammad Akhyar Farrukh (Ed.), ISBN: 978-953-307-817-5, InTech, doi: 10.5772/25925. Chp. 1, p.: 1-13, 2012.
  36. Markovic S., Veselinovic L., Lukic M.J., Karanovic L., Bracko I., Ignjatovic N., Uskokovic D. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. BiomedMater. 2011; 6: 45-50, 2011. doi: 10.1088/1748-6041/6/4/045005.
  37. Tadic D., Epple M. A thorough physicochemical characterisation of 14-calcium phosphate- based bone substitution materials in comparison to natural bone. Biomaterials. 2004; 25: 987-94.
  38. Klug Harold P., Alexander Leroy E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. New York: Wiley-Interscience; 1974.
  39. Hannink G., Chris Arts J. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011; 42: 22-5. doi: 10.1016/j.injury.2011.06.008.
  40. Bacterin, product information on Osteosponge®, 2014. Available at http://www.bacterin.com/products/osteospoge.
  41. Zimmer dental, products, regenerative, bone grafts, information on Puros®, 2014. Available at http://www.zimmerdental.com/re-vamp2k5/regenerative.
  42. KeyStone Dental Inc. product information on DynaBlast™, 2014. Available at http://www.keystonedental.com/products/dynablast.
  43. Gschneidner K., Pecharsky V, Tsokol A. Recent Developments in Magnetocaloric Materials. Reports on Progress in Physics. 2005; 68: 1479-1539. doi: 10.1088/0034-4885/68/6/R04.
  44. Chesnick I.E., Fowler C.B., Mason J.T., Potter K. Novel mineral contrast agent for magnetic resonance studies of bone implants grown on a chick chorioallantoic membrane. Magn. Reson Imaging. 2011; 29: 1244-54. doi: 10.1016/j.mri.2011.07.022. Epub 2011 Sep. 14.

© ООО "Эко-Вектор", 2017


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах