PHYSICOCHEMICAL CHARACTERIZATION: COMPARATIVE EVALUATION OF ALLOGRAFT BIOMATERIALS AND AUTOGENOUS BONE


Cite item

Full Text

Abstract

Objectives: bone substitutes used in oral surgery include allografts, xenografts and synthetic materials that are frequently used to compensate bone loss or to reinforce repaired bone by encouraging new bone ingrowth into the defect site. The aim of this study was to evaluate a number ofphysical and chemical properties in a variety of allografts biomaterials used in oral surgery and to compare them with those of autogenous bone. Materials and methods: autogenous bone andfive different allograft biomaterials were studied by high-resolution X-ray diffractometry, atomic absorption spectrometry, laser diffraction, and checked for their chemical composition, calcium release concentration, crystallinity and granulation size. Results: the highest calcium release concentration was 24.94 mg/gforPuros® and the lowest one was 4.05 mg/gfor OsteoSponge® compared to 20.15 mg/g to natural bone. The range ofparticles size, in term of median size D50, varied between 394.24 pm for DIZG Spongiosa® and 902.41 pm for OsteoSponge®, compared to 282.1 pm for natural bone. Bone and Puros® displayed a hexagonal shape as bone except and OsteoSponge® which showed a triclinic shape and all the rest showed monoclinic shape. Conclusion: a bone substitute of choice depends largely on its clinical application that is associated to its biological and mechanical performance. These morphological differences between biomaterials greatly influence their in-vivo behavior of biomaterials. Significant differences were detected in terms of calcium concentration, particles size, and crystallinity.

About the authors

Antoine Berberi

Ливанский университет

г. Бейрут, Ливия

Malkan Abdrashidova Amkhadova

ФУВ МОНИКИ им. Владимирского

Email: amkhadova@mail.ru
Dr. med. Sci., head the Department of surgical dentistry and implantology of the Vladimirskiy MONIKI. 129110, г. Москва, Россия

Antoine Samarani

Ливанский университет

г. Бейрут, Ливия

Georges Aoun

Ливанский университет

г. Бейрут, Ливия

References

  1. Kay M.I., Young R.A., Posner A.S. Crystal Structure Of Hydroxyapatite. Nature. 1964; 12: 1050-2.
  2. Ripamonti U., Klar R.M. Regenerative frontiers in craniofacial reconstruction: grand challenges and opportunities for the mammalian transforming growth factor-P proteins. Front Physiol. 2010; 11:143. doi: 10.3389/fphys.2010.00143.
  3. Le Geros R. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008; 108: 4742-53.
  4. Hanawa T., Kamiura Y., Yamamoto S., Kohgo T., Amemiya A. et al. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J. Biomed. Mat. Res. 1997; 36: 131-6.
  5. Sul Y.T., Byon E.S., Joeng Y. Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant. Clin. Impl. Dent. Relat. Res. 2004; 6: 101-10.
  6. Frojd V., Franke-Stenport V, Meirelles L., Wennerberg A. Increased bone contact to a calcium-incorporated oxidizedcommercially pure titanium implant: an in-vivo study in rabbits. Int. J. OralMaxillofac. Surg. 2008; 37: 561-6. doi: 10.1016/j.ijom.2008.01.020.
  7. Kang B.S., Sul Y.T., Johansson C.B., Oh S.J., Albrektsson T. The effect of calcium ion concentration on the bone response to oxidized titanium implants. Clin. Oral. Impl. Res. 2012; 23: 690-7.
  8. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J. Nippon Med. Sch. 2010; 77: 4-12.
  9. Hari Reddi A. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 1998; 16: 247-52.
  10. Kenley R.A., Yim K., Abrams J., Ron E., Turek T., Marden L.J., Hollinger J.O. Biotechnology and bone graft substitutes. Pharma-ceut. Res. 1993; 10: 1393-401.
  11. Block M.S., Kent J.N. Sinus augmentation for dental implants: the use of autogenous bone. J. Oral Maxil. Surg. 1997; 55: 1281-6.
  12. Wheeler S.L. Sinus augmentation for dental implants: the use of al-loplastic materials. J. Oral Maxil. Surg. 1997; 55: 1287-93.
  13. Greenwald A.S., Boden S.D., Goldberg V.M., Khan Y., Laurencin C.T., Rosier R.N. Bone-graft substitutes: Facts, fictions, and applications. J. Bone Joint Surg. Am. 2001; 83: 98-103.
  14. Parikh S.N. Bone graft substitutes: Past, present, future. J. Postgrad. Med. 2002; 28: 142-8.
  15. Finkemeier C.G. Bone grafting and bone-graft substitutes. J. Bone Joint Surg. Am. 2002; 84: 454-64.
  16. Sandor G.K.B., Lindholm T.C., Clokie C.M.L. Bone regeneration of the cranio-maxillofacial and dento-alveolar skeletons in the framework of tissue engineering. In: N. Ashammakhi, P. Ferretti, Ed.: Topics in Tissue Engineering. 2003; chp 7: 1-46.
  17. Ben-Nissan B. Natural bioceramics: From coral to bone and beyond. Curr. Opin. Solid State Mater Sci. 2003; 7: 283-8.
  18. Vallet-Regi M., Gonzales-Calbet J.M. Calcium phosphate as substitution of bone tissues. Progress in solide state chemistry. 2004; 32: 1-31.
  19. Hing A.K., Wilson F.L., Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007; 7: 475-90.
  20. Rueger J.M., Linhart W., Sommerfeldt D. Biologic reactions to calcium phosphate ceramic implantations. Results of animal experiments. Orthopade. 1998; 27: 89-95.
  21. Bohner M. Calcium orthophosphates in medicine: From ceramics to calcium, phosphate cements. Injury. 2000; 31: 37-47.
  22. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine J. 2001; 10: 114-21.
  23. Bouchlariotou I., Bernard J.P., Carrel J.P., Vazquez L. Long-term stability of osseointegrated implants in bone regenerated with a collagen membrane in combination with a deproteinized bovine bone graft: 5-year follow-up of 20 implants. POSEIDO. 2013; 1: 45-53.
  24. Toeroek R., Dohan Ehrenfest D.M. The concept of Screw-Guided Bone Regeneration (S-GBR). Part 3: Fast Screw-Guided Bone Regeneration (FS-GBR) in the severely resorbed preimplant posterior mandible using allograft and Leukocyte- and Platelet-Rich Fibrin (L-PRF): a 4-year follow-up. POSEIDO. 2013; 2: 93-100.
  25. Toeroek R., Dohan Ehrenfest D.M. The concept of Screw-Guided Bone Regeneration (S-GBR). Part 2: S-GBR in the severely resorbed preimplant posterior mandible using bone xenograft and Leukocyte-and Platelet-Rich Fibrin (L-PRF): a 5-year follow-up. POSEIDO vol. 2, pp. 85-92, 2013.
  26. Sung H.J., Meredith C., Johnson C., Galis Z.S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials, 2004; 25: 5735-42.
  27. Glowacki J. A review of osteoinductive testing methods and sterilization processes for demineralized bone. Cell Tissue Bank. 2005; 6: 3-12.
  28. Moore S.T., Katz J.M., Zhukauskas R.M., Hernandez R.M., Lewis C.S., Supronowicz P.R. et al. Osteoconductivity and osteoinductivity of Puros(R) DBM putty. J. Biomater Appl. 2011; 26: 151-71. doi: 10.1177/0885328210366061. Epub 2010.
  29. Traini T., Piatelli A., Caputi S., Degidi M., Mangano C. et al. Regeneration of human bone using different bone substitute biomaterials. Clin. Imp. Dent. RelaRes. 2013. doi: 10.1111/cid.12089.
  30. Klein C.P., Driessen A.A., de Groot K., van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater Res. 1983; 17: 769-84.
  31. Irinakis T. Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J. OralMaxillofac. Surg. 2011; 69: 134-41. doi: 10.1016/j. joms.2010.07.028. Epub 2010 Nov 2.
  32. Schmitt C.M., Doering H., Schmidt T., Lutz R., Neukam F.W., Schlegel K.A. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin. Oral Implants Res. 2013; 24: 576-85. doi: 10.1111/j.1600-0501.2012.02431.x. Epub 2012 Feb 13.
  33. Peters F., Scwarz K., Epple M. The structure of bone studied with synchroton X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. ThermochimicaActa. 2000; 361: 131-8.
  34. Figueiredo M., Henriques J., Martins G., Guerra F., Judas F., Figue-iredo H. physicochemical characterization of biomaterials commonly used in dentistry as bone substitues-comparison with human bone. J. Biomed. Mater. Res. part B: Appl Biomater. 2010; 92B: 409-19.
  35. García R., Báez A.P. Atomic Absorption Spectrometry (AAS), Atomic Absorption Spectroscopy, Dr. Muhammad Akhyar Farrukh (Ed.), ISBN: 978-953-307-817-5, InTech, doi: 10.5772/25925. Chp. 1, p.: 1-13, 2012.
  36. Markovic S., Veselinovic L., Lukic M.J., Karanovic L., Bracko I., Ignjatovic N., Uskokovic D. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. BiomedMater. 2011; 6: 45-50, 2011. doi: 10.1088/1748-6041/6/4/045005.
  37. Tadic D., Epple M. A thorough physicochemical characterisation of 14-calcium phosphate- based bone substitution materials in comparison to natural bone. Biomaterials. 2004; 25: 987-94.
  38. Klug Harold P., Alexander Leroy E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. New York: Wiley-Interscience; 1974.
  39. Hannink G., Chris Arts J. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011; 42: 22-5. doi: 10.1016/j.injury.2011.06.008.
  40. Bacterin, product information on Osteosponge®, 2014. Available at http://www.bacterin.com/products/osteospoge.
  41. Zimmer dental, products, regenerative, bone grafts, information on Puros®, 2014. Available at http://www.zimmerdental.com/re-vamp2k5/regenerative.
  42. KeyStone Dental Inc. product information on DynaBlast™, 2014. Available at http://www.keystonedental.com/products/dynablast.
  43. Gschneidner K., Pecharsky V, Tsokol A. Recent Developments in Magnetocaloric Materials. Reports on Progress in Physics. 2005; 68: 1479-1539. doi: 10.1088/0034-4885/68/6/R04.
  44. Chesnick I.E., Fowler C.B., Mason J.T., Potter K. Novel mineral contrast agent for magnetic resonance studies of bone implants grown on a chick chorioallantoic membrane. Magn. Reson Imaging. 2011; 29: 1244-54. doi: 10.1016/j.mri.2011.07.022. Epub 2011 Sep. 14.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies