Efficiency of cleaning dental structural polymer materials and their resistance to biofouling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aim. The formation of biofilms, involving microorganisms from the oral cavity, on the surface of various structural dental materials was investigated. Flexistron Plus, Dentalos Plus, and PEEK are used in dental orthopedic practice for prosthetics.

Materials and methods. The difference in quantity depends on the structure and type of plastics, as well as on their mechanical cleaning. All the plastic samples were obtained using atomic force microscopy, which made it possible to detect differences in the microstructure and microrelief of all the types of plastics and to demonstrate bacterial growth on plastics before and after the mechanical cleaning of their surfaces with a toothbrush.

Conclusion. The revealed facts of increased microbial contamination after the mechanical treatment of the surface of polymer materials suggest the need for additional lining with harder materials or the creation of new composites based on these polymers with high hygienic adequacy.

About the authors

F. A. Khafizova

Kazan (Volga) Federal University

Author for correspondence.
Email: khafizovirek@mail.ru
Russian Federation, 420008, Kazan

R. M. Mirgazizov

Kazan (Volga) Federal University

Email: khafizovirek@mail.ru
Russian Federation, 420008, Kazan

I. R. Khafizov

Kazan (Volga) Federal University

Email: khafizovirek@mail.ru
Russian Federation, 420008, Kazan

Y. A. Ulyanov

Kazan (Volga) Federal University

Email: khafizovirek@mail.ru
Russian Federation, 420008, Kazan

References

  1. Ferracane JL. Resin composite-state of the art. Dent. Mater. 2011;27(1):29–38. doi: 10.1016/j.dental.2010.10.020.
  2. Mirgazizov MZ, Gunter VE, Galonsky VG. Medical materials and shape memory implants in dentistry. [Meditsinskie materialy i implantaty s pamyat'yu formy v stomatologii]. Tomsk: MITs; 2011. 220 p. (in Russian)
  3. Xu XY, He LB, Zhu BG, Li JY, Li JS. Advances in polymeric materials for dental applications. Polym. Chem. 2017;8(5):807–23. doi: 10.1039/C6PY01957A.
  4. Bayne SC. Correlation of clinical performance with 'in vitro tests' of restorative dental materials that use polymer-based matrices. Dent. Mater. 2012;28(1):52–71. doi: 10.1016/j.dental.2011.08.594.
  5. Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 2008;87(8):710–9. doi: 10.1177/154405910808700802.
  6. Strassburger C, Kerschbaum T, Heydecke G. Influence of implant and conventional prostheses on satisfaction and quality of life: a literature review. Part 2: Qualitative analysis and evaluation of the studies. Int. J. Prosthodon. 2006;19(4):339–48.
  7. Mirgazizov MZ, Khafizov RG, Mirgazizov АМ, Mirgazizov RM, Tsyplakov DE, Khafizova FA. Interfaces in osseointegrated dental implants and a new inverted approach to their microscopic and histological study. Poseido. 2013;1(3):141–7.
  8. Darbar UR, Huggett R, Harrison A. Denture fracture — a survey. Br. Dent. J. 1994;176(9):342–5. doi: 10.1038/sj.bdj.4808449.
  9. Vallittu PK. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. J. Prosthet. Dent. 1999;81(3):318–26. doi: 10.1016/s0022-3913(99)70276-3.
  10. Volchkova IR, Yumashev AV, Utyuzh AS, Doroshina VYu, Mikhaylova MV. The use of polyetheretherketone in removable prosthetics: analysis and comparison to other thermoplastic materials (literature review). Klinicheskaya stomatology. 2018;(1):72–5. (in Russian) doi: 10.37988/1811-153X_2018_1_72.
  11. Rosentritt M, Kolbeg K. Possibilities and limits of PEEK in dentistry. [Vozmozhnosti i predely PEEK v stomatologii]. Regensburg; 2014. 13p. (in Russian)
  12. Zhang N, Ma YS, Weir MD, Xu HH, Bai YX, Melo MA. Current insights into the modulation of oral bacterial degradation of dental polymeric restorative materials. Materials (Basel). 2017;10(5):507. doi: 10.3390/ma10050507.
  13. Khafizova FA, Il'inskaya ON, Ziganshin AM, Khafizov IR. Study of the composition and comparative analysis of bacterial communities of samples of the gingival mucosa in normal conditions and with inflammation in the zones of dental implantation. In: Khafizov R.G., ed. The quality of dental medical care: ways of achieving, criteria and methods of assessment: Proceedings of the international research conference. [Kachestvo okazaniya meditsinskoi sto-matologicheskoi pomoshchi: sposoby dostizheniya, kriterii i metody otsenki: Sbornik statei mezhdunarodnoi nauchno-prakticheskoi konferentsii]. Kazan: Kazanskii (Privolzhskii) federal'nyi universitet; 2016:9–17. (in Russian)
  14. Mayanagi G, Igarashi K, Washio J, Takahashi N. pH response and tooth surface solubility at the tooth/bacteria interface. Caries Res. 2017;51(2):160–6. doi: 10.1159/000454781.
  15. Spencer P, Ye Q, Park J, Topp EM, Misra A, Marangos O., et al. Adhesive/dentin interface: the weak link in the composite restoration. Ann. Biomed. Eng. 2010;38(6):1989–2003. doi: 10.1007/s10439–010–9969–6.
  16. Vankov PY, Ziganshina EE, Ilinskaya ON, Khafizova FA, Khafi-zov RG, Ziganshin AM. Comparative analysis of bacterial communities associated with healthy and inflamed peri-implant tissues. Bionanoscience. 2016;6(4):490–5.
  17. Bourbia M, Finer Y. Biochemical stability and interactions of dental resin composites and adhesives with host and bacteria in the oral cavity: a review. J. Can. Dent. Assoc. 2018;84:i1.
  18. Delaviz Y, Finer Y, Santerre JP. Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mater. 2014;30(1):16–32. doi: 10.1016/j.dental.2013.08.201.
  19. Volchkova IR, Yumashev AV, Doroshina VYu, Borisov VV. The effect of cleaning agents for removable prostheses from polyetheretherketone and other thermoplastic materials on the adhesion of representatives of pathogenic oral microflora in a comparative aspect in an in vitro experiment. Klinicheskaya stomatologiya. 2020;(1):80–4. (in Russian) doi: 10.37988/1811–153X_2020_1_80.
  20. Khafizov RG, Azizova DA, Khafizova FA, Zaripova EM, Zhitko AK. Modern materials and methods for the prevention of dental diseases: Study guide. [Sovremennye materialy i metody profilaktiki stomatologicheskikh zabolevanii: Uchebno-metodicheskoe posobie]. Kazan: Kazanskii universitet; 2014. 52 p. (in Russian)
  21. Kayumov AR, Khakimullina EN, Sharafutdinov IS, Trizna EY, Latypova LZ, Lien HT, et al. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. J. Antibiot. (Tokyo). 2015;68(5):297–301. doi: 10.1038/ja.2014.143.
  22. Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova FS, et al. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci. Rep. 2017;7:46068. doi: 10.1038/srep46068.
  23. Sharafutdinov I, Pavlova A, Khabibrakhmanova A, Kurbangalieva A, Kayumov A. The antimicrobial effect of the 5-((-)bornyloxy)-2(5H)-furanone de-rivative on grampositive bacteria. FEBS J. 2017;284(Suppl. 1):143.
  24. Herigstad B, Hamilton M, Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44(2):121–9. doi: 10.1016/s0167–7012(00)00241–4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The number of viable cells on surfaces polymeric materials contaminated within 48 hours of bio- S. mutans film before (black) and after dental brush for 5 minutes (gray).

Download (148KB)
3. Fig. 2. Atomic force microscopy of poly- dimensional materials (Flexistrong Plus, Dentalos Plus, PEEK) in original state (A) contaminated with 48-hour biological with S. mutans film (B) and after cleaning with a toothbrush (IN).

Download (1MB)

Copyright (c) 2020 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies