RAMAN-FLUORESCENT CHARACTERISTICS OF DIFFERENT ANATOMICAL AND TOPOGRAPHIC ZONES OF TEETH OF DIFFERENT FUNCTIONAL GROUPS


Cite item

Full Text

Abstract

The aim of the study is to study the state of mineralization of various anatomical and topraphic zones of teeth for different functiona I groups and to justify its clinical feasibility. In a preclinical in vitro study on 20 model test objects of teeth (incisors, canines, premolars and painters), removed according to clinical indications, Raman-fluorescent study of the degree of mineralization of various anatomical and topographic zones of the tooth in different functional groups of teeth was carried out. Used APC Inspector M with a wavelength of532 nm probing radiation. The advantages of Raman fluorescence spectroscopy for determining the degree of mineralization of hard tooth tissues are objectivity (digital technology), expressiveness, non-invasiveness, simple and non-destructive control of the degree of mineralization/remineralization of hard tooth tissues, the ability to document and store information. In th e course of the study, a qualitative and quantitative analysis of the mineralization of various anatomical and topraphic zones of teeth for different functional groups of teeth was carried out. High sensitivity and reproducibility of the method allowed to reveal significant differences in mineralization of tooth enamel in the area of the cutting edge, equator and neck of the tooth. It is shown that these differences are manifested in other functional groups of teeth (p < 0.05).

About the authors

Mikhail Timofeevich Alexandrov

I.M. Sechenov First MGMU (Sechenovskiy Universitet)

Email: alex_mta@mail.ru
MD, professor 119146, Moscow

E. F Dmitrieva

I.M. Sechenov First MGMU (Sechenovskiy Universitet)

119146, Moscow

A. N Akhmedov

I.M. Sechenov First MGMU (Sechenovskiy Universitet)

119146, Moscow

O. A Artemova

I.M. Sechenov First MGMU (Sechenovskiy Universitet)

119146, Moscow

A. Potrivailo

I.M. Sechenov First MGMU (Sechenovskiy Universitet)

119146, Moscow

D. V Prikule

I.M. Sechenov First MGMU (Sechenovskiy Universitet)

119146, Moscow

References

  1. Huser T. Nanosensors using Surface-Enhanced Raman Scattering (SERS). Center for Biophotonics Science and Technology; EAD289: 2007.
  2. Александров М.Т., Маргарян Э.Г. Применение лазерных технологий в клинике терапевтической стоматологии (обоснование, возможности, перспективы). Российская стоматология. 2017; 3: 31-6.
  3. Александров М.Т., Пашков Е.П., Баграмова Г.Э., Кукушкин В.И., Маргарян Э.Г. Возможности и перспективы применения раман-флюоресцентной диагностики в стоматологии. Российский стоматологический журнал. 2018; 22(1): 4-11.
  4. Kukushkin I.V. “Raman spectroscopy of collective excitations”, International Conference on Application of High Magnetic Field in Semiconductor Physics, HMFSP-18, 31 July - 5 August 2010, Fukuoka, Japan, Proceedings. 2010; 49.
  5. Kukushkin I.V. “Rotons in the dispersion of collective excitations studied by Raman technique”, International Conference “The Quantum Hall Effect”, 2-4 May 2010, Minneapolis, USA, Proceedings. 2010; 39.
  6. Kulik L.V., Zhuravlev A.S. “Resonant Raman scattering as a probe of electron spinpolarization”,20th International Conference on High Magnetic Fields in Semiconductor PhysicsJuly 22-27 2012, Chamonix, France, Proceedings. 2012; 131.
  7. Yang S., Li B., Akkus A., Akkus O., Lang L. Wide-Field Raman Imaging of Dental LesionsSchool of Dental Medicine (Case Western Reserve University. Cleveland: OH, 44106, USA. Raman Spectroscopy).
  8. Pezzotti G. Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 2005; 381: 577-90.
  9. Kirchner M.T., Edwards H.G.M., Lucy D., Pollard A.M. Ancient and modern specimens of human teeth: A Fourier transform Raman spectroscopic study. J. Raman Spectros. 1997; 28: 171-8.
  10. Boskey A.L., Mendelsohn R. Infrared spectroscopic characterization of mineralized tissue. Vib. Spectros. 2005; 38: 107-14.
  11. Ionita I. Diagnosis of tooth decay using polarized micro-Raman confocal spectroscopy. Rom. Rep. Phys. 2009; 61: 567-74.
  12. Ager J.W., Nalla R.K., Breeden K.L., Ritchie R.O. Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. J. Biomed. Optic., 2005; 10: 034012.
  13. Максимовский Ю.М., Ульянова Т.В., Гринин В.М. и др. Кариес зубов [Электронный ресурс] М.: ГЭОТАР-Медиа; 2009.
  14. Kneipp K., Kneipp H., Itzkan I., Dasari R., Feld M. Surface enhanced Raman scattering and biophysics. J. Phys. Condensed Matter. 2002;14: R597-R624. http://www.studmedlib.ru/book/IS- BN9785970408643.html
  15. Sheng R., Nii F., Cotton T. Determination of purine bases by reversed-phase high-performance liquid chromatography using realtime surface-enhanced Raman spectroscopy.Anal. Chem. 1991; 63, 437. http://www.studmedlib.ru/book/ISBN9785970408643.html
  16. Thornton J., Force R. Appl. Spectrosc. 1991; 45, 1522.

Copyright (c) 2019 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies