USE OF ROBOTS IN DENTISTRY. PART 1. ROBOTIC SYSTEM FOR TRAINING DENTAL STUDENTS AND PROFESSIONALS


Cite item

Full Text

Abstract

Introduction. The first use of the robot in surgery occurred in 1985. The PUMA 560 robot was used to position a needle for a brain biopsy according to a CT scan [2,4,5]. In 1994, Computer Motion’s surgical robotic system, Automated Endoscopic System for Optimal Positioning (AESOP), was the first in the United States to receive permission for use in surgical practice from the Food and Drug Administration (FDA). Purpose. To analyze the literature and patent sources and propose a preliminary classification of the range of application of robot-assisted systems in medicine. Material and methods. Analyzed and systematized the field of application of robot-assimilated systems (RAS) in medicine, as well as the possibility of using the application of RAS for training specialists. Findings. In our opinion, the development of robot-assisted systems should include the improvement of methods of intraoperative imaging, diagnostic tools, the improvement of surgical instruments, as well as the emergence of new robot-assisted developments. We assume that the future of medical operational technologies is beyond mechatronic devices, but the use of these systems requires a rational approach. The use of this equipment is justified only in the case when it is impossible or significantly difficult to carry out the operation by a doctor.

About the authors

Mikhail Mikhailovich Ukhanov

Clinic “DDC” (Moscow)

Email: uhanov1@yandex.ru
doctor-dentist-orthopedist 107392, Moscow

A. V Ivashchenko

“Innovative dental center”

443035, Samara

I. M Fedyaev

“Samara state medical University” Ministry of health of Russia

443079, Samara

A. E Yablokov

“Samara state medical University” Ministry of health of Russia

443079, Samara

I. N Kolganov

“Samara state medical University” Ministry of health of Russia

443079, Samara

V. P Tlustenko

“Samara state medical University” Ministry of health of Russia

443079, Samara

References

  1. Capek K. Rossum’s Universal Robots. trans. Playfair N., Selver P.; ed. W.A. Landes. New York: Doubleday; 1923.
  2. Колонтарев К.Б., Пушкарь Д.Ю., Говоров А.В., Шептунов С.А. История развития роботических технологий в медицине». Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2014; 4 (32): 125-40.
  3. De Ceulaer J., De Clercq C., Swennen G.R. Robotic surgery in oral and maxillofacial, craniofacial and head and neck surgery: a systematic review of the literature. Int. J. Oral Maxillofac. Surg. 2012; 41(11): 1311-24. doi: 10.1016/j.ijom.2012.05.035.
  4. Kwoh Y.S., Hou J., Jonckheere E.A., Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988; 35: 153-60. doi: 10.1109/10.1354
  5. Zamorano L., Li Q., Jain S., Kaur G. «Robotics in neurosurgery: state of the art and future technological challenges. Int. J. Med. Robot. 2004; 1(1): 7-22.
  6. Ahmed S.I., Javed G., Mubeen B., Bareeqa S.B., Rasheed H., Rehman A., et al. Robotics in neurosurgery: A literature review. J. Pak Med. Assoc. 2018; 68(2): 258-63.
  7. Robotic surgery ‘here to stay’ despite concerns about cost, lack of data. Hem.Onc. Today, December 25, 2013.
  8. Investor Presentation http://phx.corporate-ir.net/phoenix.zhtml?c= 122359&p=irol-IRHome
  9. De Ceulaer J., De Clercq C., Swennen G.R. «Robotic surgery in oral and maxillofacial, craniofacial and head and neck surgery: a systematic review of the literature. Int. J. Oral Maxillofac. Surg. 2012; 41(11): 1311-24. doi: 10.1016/j.ijom.2012.05.035.
  10. Kavanagh K.T. «Applications of image-directed robotics in otolaryngologic surgery. Laryngoscope. 1994; 104(3 Pt 1): 283-93.
  11. Lueth T.C., Hein A., Albrecht J., Dimitras M., Zachow S., Heissler E., et al. A surgical robot system for maxillofacial surgery. IEEE international conference on Industrial Electronics, Control and Instrumentation (IECON). 1998; 2470-5.
  12. O’Malley B.W. Jr., Weinstein G.S., Snyder W., Hockstein N.G. «Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006; 116(8): 1465-72.
  13. Cracchiolo J.R., Roman B.R., Kutler D.I., Kuhel W.I., Cohen M.A. Adoption of transoral robotic surgery compared with other surgical modalities for treatment of oropharyngeal squamous cell carcinoma. J. Surg. Oncol. 2016; 114(4): 405-11. doi: 10.1002/jso.24353.
  14. Borumandi F., Cascarini L. Robotics in oral and maxillofacial surgery: How trans-oral robotic surgery can treat cancer in the oropharyngyal space. May 2018 Annals of The Royal College of Surgeons of England 100(6_sup):16-18. DOI: · 0.1308/rcsann.supp1.16
  15. РАН планирует создать тренировочный центр роботической хирургии. Материалы портала «Научная Россия». 2018; 15: 50. https://scientificrussia.ru/articles/ran-planiruet-sozdat-trenirovochnyj-tsentr-robotizirovannoj-meditsiny
  16. Robotic Implant System Gets FDA Clearance. Dentistry Today. 06 Mar 2017. http://dentistrytoday.com/news/industrynews/item/1749-robotic-implant-system-gets-fda-clearance
  17. ZivA., Wolpe P.R., Small S.D., Glick S. Simulation-based medical education: an ethical imperative. Acad. Med. 2003; 78: 783-8.
  18. Buchanan J.A. Use of simulation technology in dental education. J. Dent. Educ. 2001; 65(11): 1225-31.
  19. Suganuma T., Kaizawa N., Ono Y., et al. «Development of virtual patient system to improve a fundamental clinical skill». J. Japan Assoc Simul-Based Edu Healthcare Profess. 2013; 1: 1-5.
  20. Bakr M.M., Massey W.L., Alexander H. Can virtual simulators replace traditional preclinical teaching methods: a students’ perspective? Int. J. Dent. Oral Health. 2015; 2 (1). http://dx.doi.org/10.16966/2378-7090.149.
  21. Huang T.K., Yang C.H., Hsieh Y.H., Wang J.C., Hung C.C. Augmented reality (AR) and virtual reality (VR) applied in dentistry. Kaohsiung J. Med. Sci. 2018; 34(4): 243-8. doi: 10.1016/j.kjms.2018.01.009.
  22. Wang D., Li T., Zhang Y., Hou J. Survey on multisensory feedback virtual reality dental training systems. Eur. J. Dent. Educ. 2016; 20(4): 248-60. doi: 10.1111/eje.12173.
  23. Rose J.T., Buchanan J.A., Sarrett D.C. The Dent Sim system. J. Dent. Educ. 1999; 63(5): 421-3.
  24. Welk A., Splieth C., Rosin M., Kordass B., Meyer G. DentSim - a future teaching option for dentists. Int. J. Comput. Dent. 2004; 7(2): 123-30.
  25. Roy E., Bakr M.M., George R. The need for virtual reality simulators in dental education: A review. Saudi Dent J. 2017; 29(2): 41-7. doi: 10.1016/j.sdentj.2017.02.001.
  26. Jasinevicius T.R., Landers M., Nelson S., Urbankova A. An evaluation of two dental simulation systems: virtual reality versus contemporary non-computer-assisted. J. Dent Educ. 2004; 68(11): 1151-62.
  27. Mirghani I., Mushtaq F., Allsop M.J., Al-Saud L.M., Tickhill N., Potter C., et al. Capturing differences in dental training using a virtual reality simulator. Eur. J. Dent Educ. 2018; 22(1): 67-71. doi: 10.1111/eje.12245.
  28. Bakr M.M., Massey W., Alexander H. Students’ evaluation of a 3DVR haptic device (Simodont®). Does early exposure to haptic feedback during preclinical dental education enhance the development of psychomotor skills? Int. J. Dent. Clin. 2014; 6: 1-7.
  29. Kumar P.Y., Dixit P., Kalaivani V., Rajapandian K. Future Advances in Robotic Dentistry. J. Dent. Health Oral Disord. Ther. 2017; 7(3): 00241. doi: 10.15406/jdhodt.2017.07.00241
  30. Hamura A., Uzuka S., Miyashita W., Akiyama H., Hara S. «Development of patient simulation systems for dental education, SIMROID. J. Dent. Res. 2011; 87 Special lssue #617.
  31. Akiyama H., Uzuka S., Miyashita W., Hara S., Hamura A. Development of New patient simulation systems (SIMROID) for prosthodontic clinical training. JJDEA. 2013; 29: 11-20.
  32. Abe S., Noguchi N., Matsuka Y., Shinohara C., Kimura T., Oka K., et al. Educational effects using a robot patient simulation system for development of clinical attitude. Eur. J. Dent. Educ. 2018; 22(3): e327-e336. doi: 10.1111/eje.12298.
  33. Syed H., Shankar S. A meta-analysis of the training effectiveness of virtual reality surgical simulators. IEEE Trans Inf Technol Biomed. 2006; 10(1): 51-8.
  34. Kneebone R. Simulation in surgical training: educational issues and practical implications. Med. Educ. 2003; 37: 267-77.
  35. Moglia A., Ferrari V., Morelli L., Ferrari M., Mosca F., Cuschieri A. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery. Eur. Urol. 2016; 69(6): 1065-80. doi: 10.1016/j.eururo.2015.09.021.
  36. Bric J.D., Lumbard D.C., Frelich M.J., Gould J.C. Current state of virtual reality simulation in robotic surgery training: a review. Surg. Endosc. 2016; 30(6): 2169-78. doi: 10.1007/s00464-015-4517-y.
  37. Goh A.C., Goldfarb D.W., Sander J.C., Miles B.J., Dunkin B.J. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J. Urol. 2012; 187(1): 247-52. doi: 10.1016/j.juro.2011.09.032.
  38. Dubin A.K., Smith R., Julian D., Tanaka A., Mattingly P. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools. J. Minim Invasive Gynecol. 2017; 24(7): 1184-9. doi: 10.1016/j.jmig.2017.07.019.
  39. Колонтарев К.Б., Шептунов С.А., Прилепская Е.А., Мальцев Е.Г., Пушкарь Д.Ю. Симуляторы в обучении робот-ассистированной хирургии (обзор литературы). Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2016; 2(38): 116-31, doi: 10.21685/2072-3032-2016-2-12.

Copyright (c) 2018 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies