COMPARATIVE CHARACTERISTICS OF VARIOUS TYPES OF MEMBRANES USED FOR BONE GRAFTING AND GUIDED TISSUE REGENERATION IN DENTISTRY AND MAXILLOFACIAL SURGERY


Cite item

Full Text

Abstract

This review aims to analyze the domestic and foreign professional literature, and it shows the main positive and negative properties of the materials for the manufacture of membranes used in modern dental practice in bone-grafting interventions and guided tissue regeneration. Emphasis is placed on the importance of developing a new individual membrane made of polytetrafluorethylene, due to high relevance of such researches owing toreduce the risk of infection of surgical wounds and high degree of adaptation to the geometry of the bone defect.

About the authors

I. Mecuku

'People’s Friendship University of Russia

117198, Moscow, Russian Federation

A. A Muraev

'People’s Friendship University of Russia; Post graduate education in Nizhny Novgorod medical state academy

117198, Moscow, Russian Federation; 603005, Nizhny Novgorod, Russian Federation

Julia V. Gazhva

Post graduate education in Nizhny Novgorod medical state academy

Email: gazhva@yandex.ru
PhD, Tutor, assistant of the Department of Maxillofacial Surgery and Implantology NNSMA 603005, Nizhny Novgorod, Russian Federation

S. G Ivashkevich

'People’s Friendship University of Russia

117198, Moscow, Russian Federation

References

  1. Иванов С.Ю., Ларионов Е.В., Семенова Ю.А., Рябова В.М. Исследование нового биокомпозиционного остеопластического материала на основе костного минерального компонента, гиалуроновой кислоты и сульфатированных гликозаминогликанов. Российский вестник дентальной имплантологии. 2015; 31(1): 14-9.
  2. Иванов С.Ю., Ямуркова Н.Ф., Мураев А.А. и др. Обоснование применения различных методов реконструкции альвеолярной части нижней челюсти как этапа подготовки к стоматологической имплантации. Российский вестник дентальной имплантологии. 2013; 2(28): 34-9.
  3. Миргазизов М.З. Основные тенденции развития отечественной дентальной имплантологии. Российский вестник дентальной имплантологии. 2005; 1/2 (9/10): 4-9.
  4. Жусев А.И., Ремов А.Ю. Дентальная имплантация. Критерии успеха. М.: 2004.
  5. Зицманн Н., Шерер П. Стоматологическая реабилитация с помощью дентальных имплантатов. М.: Азбука, 2005.
  6. Мушеев И.У, Олесова В.Н., Фромович О.З. Практическая дентальная имплантология. 2-е изд., М: Локус Станди; 2008.
  7. Филатова А.С. Направленная костная регенерация с применением титановой сетки при реконструктивных вмешательствах на челюстных костях. 32-я итоговая конференция молодых ученых МГМСУ.М.: 2010; 26.
  8. Волков А.В., Михайловский А.А., Кулаков А.А. Сохранение объема костной ткани альвеолярного гребня при симметричной аугментации лунки удаленного зуба: клинико-морфологическое исследование. Клиническая и экспериментальная морфология. 2015; 1(13): 8-18.
  9. Вайс Ч.М. Главные критерии клинического прогноза зубных имплантатов. Квинтэссенция. Стоматологический ежегодник. 1992; 102-7.
  10. Руттен Л. Эстетика имплантатов. Пер. с нем. Под ред. С.И. Вольвач. М.: DENT; 2006.
  11. Lizio G., Corinaldesi G., Marchetti C. Alveolar ridge reconstruction with titanium mesh: a three-dimensional evaluation of factors affecting bone augmentation. Int J. Oral Maxillofac Implants. 2014; 29: 1354-63.
  12. Gutta R., Baker R.A., Bartolucci A.A., Louis P.J. Barrier membranes used for ridge augmentation: Is there an optimal pore size? J. Oral Maxillofac. Surg. 2009; 67: 1218-25.
  13. Zhao L., Li N., Wang K., Shi C., Zhang L., Luan Y. A review of polypeptide-based polymer somes. Biomaterials. 2014; 35: 1284-301.
  14. Zellin G., Gritli-Linde A., Linde A. Healing of mandibular defects with different biodegradable and non-biodegradable membranes: an experimental study in rats. Biomaterials. 1995; 16: 601-9.
  15. Becker W., Becker B., Mellonig J. A prospective multicenter study evaluating periodontal regeneration for class II furcation invasions and infra bony defects after treatment with a bioabsorbable barrier membrane: 1-year results. J. Periodontol. 1996; 67: 641-9.
  16. Lee J.Y., Kim Y.K., Yun P.Y., Oh J.S., Kim S.G. Guided bone regeneration using two types of non-resorbable barrier membranes. J. Korean Assoc. Oral Maxillofac. Surg. 2010; 36: 275-9.
  17. Rokkanen P.U. Absorbable materials in orthopaedic surgery. Ann. Med. 1991; 23: 109-15.
  18. Orenstein S.B., Saberski E.R., Kreutzer D.L., Novitsky Y.W.Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J. Surg Res. 2012; 176: 423-9.
  19. Otawa N., Sumida T., Kitagaki H., Sasaki K., Fujibayashi Sh., Takemoto M. et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting. J. Cranio-MaxillofacialSurgery. 2015; 7: 1289-95.
  20. Vuddhakanok S., Solt C.W., Mitchell J.C., Foreman D.W., AlgerF.A. Histologic evaluation of periodontal attachment apparatus following the insertion of a biodegradable copolymerbarrier in humans. J. Periodontol. 1993; 64: 202-10.
  21. Mangano F., Macchi A., Shibli J.A., Luongo G., Iezzi G., Piattelli A., Caprioglio A., Mangano C. Maxillary Ridge Augmentation with Custom-Made CAD/CAM Scaffolds. A 1-Year Prospective Study on 10 Patients. J. OralImplantol. 2014; 5: 561-9.
  22. De Macedo N.L., de Macedo L.G., Monteiro Ado S. Calcium sulfate and PTFE nonporous barrier for regeneration of experimental bone defects. Med. Oral Patol. Oral Cir. Bucal. 2008; 13: 375-9.
  23. Zhang J., Xu Q., Huang C., Mo A., Li J., Zuo Y. Biological properties of an anti-bacterial membrane for guided bone regeneration: an experimental study in rats. Clin. Oral Implants Res. 2010; 21: 321-7.
  24. Chattopadhyay S., Raines R.T. Review collagen-based biomaterials for wound healing. Biopolymers. 2014; 101: 821-33.
  25. Asa'ad F., Pagni G., Pilipchuk S.P., Gianni A.B., Giannobile W.V., Rasperini G. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. Int. J. Dent. 2016. [http://dx.doi.org/10.1155/2016/1239842]
  26. Rothamel D., Schwarz F., Sager M., Herten M., Sculean A., Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin. Oral Implants Res. 2005; 16: 369-78.
  27. Rakhmatia Y.D., Ayukawa Y., Furuhashi A., Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. ProsthodontRes. 2013; 57: 3-14.
  28. Parrish L.C., Miyamoto T., Fong N., Mattson J.S., Cerutis D.R. Nonbioabsorbable vs. bioabsorbable membrane: assessment of their clinical efficacy in guided tissue regeneration technique. A systematic review. J. Oral Sci. 2009; 51: 383-400.
  29. Jones A.A., Buser D., Schenk R., Wozney J., Cochran D.L. The effect of rhBMP-2 around endosseous implants with and without membranes in the canine model. J. Periodontol. 2006; 77: 1184-93.
  30. Bartee B.K. The use of high-density polytetrafluoroethylene membrane to treat osseous defects. Clin. reports. Implant. Dent. 1995; 4: 21-6.
  31. Herr Y. Periodontology-based implantology. Seoul: Myungmoon Publishing; 2006.
  32. Daniels A.U., Andriano K.P., Smutz W.P., Chang M.K., Heller J. Evaluation of absorbable poly(ortho esters) for use in surgical implants. J. Appl. Biomater. 1994; 5: 51-64.
  33. Fields T. Guided bone regeneration: focus on resorbable membranes. In: Baylor oral surgery Thursday morning conference; 2001.
  34. Rominger J.W., Triplett R.G. The use of guided tissue regeneration to improve implant osseointegration. J. OralMaxillofac. Surg. 1994; 52: 106-12.
  35. Tseng Y.Y., Liao J.Y., Chen W.A., Kao Y.C., Liu S.J. Sustainable release of carmustine from biodegradable poly[((D,L))-lactide-co-glycolide] nan fibrous membranes in the cerebralcavity: in vitro and in vivo studies. Exp. Opin Drug. Deliv. 2013; 10: 879-88.
  36. Imbronito A.V., Todescan J.H., Carvalho C.V., Arana-Chavez V.E. Healing of alveolar bone in resorbable and non-resorbable membrane-protected defects. A histologic pilot study in dogs. Biomaterials. 2002; 23: 4079-86.
  37. Verissimo D.M., Leitao R.F., Ribeiro R.A. et al. Polyanionic collagen membranes for guided tissue regeneration: effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation. Acta Biomater. 2010; 6: 4011-8.
  38. Chiapasco M., Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin. Oral Implants Res. 2009; 20: 113-23.
  39. von Arx T., Hardt N., Wallkamm B. The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants. Int J. Oral Maxillofac Implants. 1996; 11: 387-94.
  40. Wang R.R., Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996; 27: 401-8.
  41. Watzinger F., Luksch J., Millesi W. Guided bone regeneration with titanium membranes: a clinical study. Br. J. Oral Maxillofac. Surg. 2000; 38: 312-5.
  42. Francesco G.M., Piero A.Z., Ric van Noort, et al. Custom-Made Computer-Aided-Design/Computer-Aided-Manufacturing Biphasic Calcium-Phosphate Scaffold for Augmentation of an Atrophic Mandibular Anterior Ridge. Case Reports in Dentistry. 2015; Article ID 941265, 11 с., doi: 10.1155/2015/941265
  43. Urakami K., Higashi A., Umemoto K., Godo M., Watanabe C.,Hashimoto K. Compositional analysis of copoly (DL-lactic/gly-colicacid) (PLGA) by pyrolysis-gas chromatography/mass spectrometry combined with one-step thermally assisted hydrolysisand methylation in the presence of tetramethylammoniumhydroxide. Chem. Pharm. Bull. (Tokyo). 2001; 49: 203-5.
  44. Bartee B.K. Evaluation of new polytetrafluoroethylene-guided tissue regeneration membrane in healing extraction sites. Compendium. 1998; 19: 1256-8. 1260, 1262-4.
  45. Hutmacher D., Hurzeler M.B., Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J. Oral Maxillofac. Implants. 1996; 11: 667-78.
  46. Galgut P., Pitrola R., Waite I., Doyle C., Smith R. Histological evaluation of biodegradable and non-degradable membranes placed transcutaneously in rats. J. Clin. Periodontol. 1991; 18: 581-6.
  47. Barber H.D., Lignelli J., Smith B.M., Bartee B.K. Using dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J. Oral Maxillofac. Surg. 2007; 65: 748-52.
  48. Bartee B.K., Carr J.A. Evaluation of a high-density polytetrafluoroethylene membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J. Oral Implantol. 1995; 21: 88-95.
  49. Baino F., Novajra G., Vitale-Brovarone Ch. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioengineer. Biotechnol. 3 [http://journal.frontiersin.org/article/10.3389/ fbioe.2015.00202]
  50. Athanasiou K.A., Agrawal C.M., Barber F.A., Burkhart S.S. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998; 14: 726-37.
  51. Monteiro A.S., Macedo L.G., Macedo N.L., Balducci I. Polyurethane and PTFE membranes for guided bone regeneration: histopathological and ultrastructural evaluation. Med. Oral Patol. Oral Cir. Bucal. 2010; 15: 401-6.
  52. Caffesse R.G., Nasjleti C.E., Morrison E.C., Sanchez R. Guided tissue regeneration: comparison of bioabsorbable and non-bioabsorbable membranes. Histologic and histometric study in dogs. J. Perio-dontol. 1994; 65: 583-91.
  53. Her S., Kang T., Fien M.J. Titanium mesh as an alternative to a membrane for ridge augmentation. J. Oral Maxillofac. Surg. 2012; 70: 803-10.
  54. Speer D.P., Chvapil M., Eskelson C.D., Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J. Biomed. Mater. Res. 1980; 14: 753-64.
  55. Wachtel H., Fickl S., Hinze M., Bolz W., Thalmair T. The bone lamina technique: anovel approach for lateral ridge augmentation - acase series. Int J. Periodont. Restorat. Dent. 2013; 33(4): 491-7.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies