Manufacture of ceramic structures in orthopedic dentistry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents a review of ceramic materials used in modern orthopedic dentistry. Currently, the main types of orthopedic structures containing dental porcelain are metal–ceramic and metal-free ceramic crowns and prostheses made using pressed ceramic technology, in particular veneers. All types dental porcelain prostheses have a common manufacturing technology, which involves the sequential application of ceramic layers with their subsequent firing. Moreover, each group of teeth has additional masses for firing, such as masses of the cutting edge and masses simulating various effects (e.g., blue, yellow, and other shades, imitation of tooth growth lines). These masses are created to give future crowns the most natural and aesthetic appearance. All structural components (layers) of ceramics used in the manufacture of ceramic prostheses have a similar chemical composition. The raw material is feldspar glass with crystalline quartz. Depending on the conditions of the reactions, the composition of mixtures can vary, and compounds with desired properties can be obtained using the phase analysis method, which will expand the range of domestic ceramic materials produced, which are currently relatively scarce. This is especially relevant in modern conditions of import substitution.

About the authors

Galina E. Bordina

Tver State Medical University

Email: gbordina@yandex.ru
ORCID iD: 0000-0001-6375-7981
SPIN-code: 1313-2983

Cand. Sci. (Biology), Associate Professor

Russian Federation, 4 Sovetskaya street, 170000 Tver

Nadezhda P. Lopina

Tver State Medical University

Email: n.lopina@internet.ru
ORCID iD: 0000-0002-7213-1531
SPIN-code: 1216-3570

Cand. Sci. (Chemistry), Professor

Russian Federation, 4 Sovetskaya street, 170000 Tver

Alexey A. Andreev

Tver State Medical University

Email: aandreev01@yandex.ru
ORCID iD: 0000-0002-1012-9356
Russian Federation, 4 Sovetskaya street, 170000 Tver

Vasiliy A. Osokin

Tver State Medical University

Author for correspondence.
Email: osokin-mailbox@mail.ru
ORCID iD: 0009-0000-8325-9314
Russian Federation, 4 Sovetskaya street, 170000 Tver

References

  1. Veselkov SA, Vladimirova MD. The use of ceramic material in dentistry. Tribuna uchenogo. 2019;(7):70–78. EDN: YOYKOO
  2. Kuz’mina OE. Errors in the manufacture of metal-ceramic prostheses. Causes and ways to eliminate them. Molodezhnyj innovacionnyj vestnik. 2021;10(S1):390–395. EDN: UNZWCQ
  3. Zajceva NV, Vecherkina ZhV, Kryuchkov MA, et al. Features of working with dentin ceramic mass in the manufacture of metal-ceramic dentures. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. 2020;19(3):104–110. EDN: CXKVUU doi: 10.36622/VSTU.2020.19.3.013
  4. Shi HY, Pang R, Yang J, et al. Overview of several typical ceramic materials for restorative dentistry. Biomed Res Int. 2022;2022:8451445. doi: 10.1155/2022/8451445.
  5. Lyukshted AR. Metal-ceramic — review of manufacturing technologies and comparative characteristics. Molodezhnyj innovacionnyj vestnik. 2021;10(S1):402–408. EDN: YLWFUY
  6. Zajceva NV, Vecherkina ZhV, Andreeva EA, et al. Development of an algorithm for forming the main layer of ceramic cladding in the manufacture of metal-ceramic structures. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. 2020;19(1):66–74. EDN: OXXBEA doi: 10.25987/VSTU.2020.19.1.010
  7. Sobir RK. Dental orthopedic treatment with the use of non-removable porcelain fused to metal prostheses for deformities of dentitions and dentofacial abnormalities. Zdravoohranenie Chuvashii. 2020;(4):81–85. EDN: BUVMBT doi: 10.25589/GIDUV.2020.34.46.031
  8. Valandro LF, Cadore-Rodrigues AC, Dapieve KS, et al. A brief review on fatigue test of ceramic and some related matters in dentistry. J Mech Behav Biomed Mater. 2023;138:105607. doi: 10.1016/j.jmbbm.2022.105607
  9. Abdulrahman S, Von See Mahm C, Talabani R, Abdulateef D. Evaluation of the clinical success of four different types of lithium disilicate ceramic restorations: a retrospective study. BMC Oral Health. 2021;21(1):625. doi: 10.1186/s12903-021-01987-1
  10. Vecherkina ZhV, Zajceva NV, Smolina AA, et al. Results of evaluation of possible errors and methods of their elimination at the stages of manufacturing metal-ceramic dentures. Sistemnyj analiz i upravlenie v biomedicinskih sistemah. 2021;20(2):54–62. EDN: ZNFDFC doi: 10.36622/VSTU.2021.20.2.007
  11. Rogozhnikov AG, Porozova SE, Gileva OS, et al. Chemical stability, structure and surface topology of domestic comprehensively stabilized zirconium dioxide ceramics in simulated aggressive environments. Actual Problems in Dentistry. 2023;19(4):136–142. EDN: KNKAJL doi: 10.18481/2077-7566-2023-19-4-136-142
  12. Moshaverinia A. Review of the modern dental ceramic restorative materials for esthetic dentistry in the minimally invasive age. Dent Clin North Am. 2020;64(4):621–631. doi: 10.1016/j.cden.2020.05.002
  13. Bustamante-Hernández N, Montiel-Company JM, Bellot-Arcís C, et al. Clinical behavior of ceramic, hybrid and composite onlays. A systematic review and meta-analysis. Int J Environ Res Public Health. 2020;17(20):7582. doi: 10.3390/ijerph17207582
  14. Vokulova YuA, Zhulev EN, Vel’makina IV. A method for correction of occlusal relationships between dental rows using digital technology. Siberian Medical Review. 2022;(4):83–88. EDN: RMHQSN doi: 10.20333/25000136-2022-4-83-88
  15. Nemscveridze YaE, Derbina LR. Pharmacologic agents used among patients with precancerous diseases of the oral mucosa. Vestnik medicinskogo instituta «Reaviz»: reabilitaciya, vrach i zdorov’e. 2022;(2):343–344.
  16. Jo EH, Huh YH, Ko KH, et al. Effect of different ceramic materials and substructure designs on fracture resistance in anterior restorations. J Prosthet Dent. 2022;127(5):785–792. doi: 10.1016/j.prosdent.2020.09.056
  17. Manziuc M, Kui A, Chisnoiu A, et al. Zirconia-reinforced lithium silicate ceramic in digital dentistry: a comprehensive literature review of our current understanding. Medicina (Kaunas). 2023;59(12):2135. doi: 10.3390/medicina59122135
  18. Sanal FA, Kilinc H. Evaluating ceramic repair materials in terms of bond strength and color stability. Int J Prosthodont. 2020;33(5):536–545. doi: 10.11607/ijp.6760
  19. Velho HC, Dapieve KS, Valandro LF, et al. Cyclic fatigue tests on non-anatomic specimens of dental ceramic materials: a scoping review. J Mech Behav Biomed Mater. 2022;126:104985. doi: 10.1016/j.jmbbm.2021.104985
  20. Liu C, Eser A, Albrecht T, et al. Strength characterization and lifetime prediction of dental ceramic materials. Dent Mater. 2021;37(1):94–105. doi: 10.1016/j.dental.2020.10.015
  21. Dhesi GS, Sidhu S, Al-Haj Husain N, Özcan M. Evaluation of adhesion protocol for titanium base abutments to different ceramic and hybrid materials. Eur J Prosthodont Restor Dent. 2021;29(1):22–34. doi: 10.1922/EJPRD_2073Dhesi13
  22. Sodergren B, Wang J, Zhang Y, Kim J. Fracture resistance of ceramic-polymer hybrid materials using microscopic finite element analysis and experimental validation. Comput Methods Biomech Biomed Engin. 2022;25(16):1785–1795. doi: 10.1080/10255842.2022.2038141
  23. Revilla-León M, Meyer MJ, Zandinejad A, Özcan M. Additive manufacturing technologies for processing zirconia in dental applications. Int J Comput Dent. 2020;23(1):27–37.
  24. Zhang Y, Vardhaman S, Rodrigues CS, Lawn BR. A critical review of dental lithia-based glass-ceramics. J Dent Res. 2023;102(3):245–253. doi: 10.1177/00220345221142755
  25. Komine F, Honda J, Kusaba K, et al. Clinical outcomes of single crown restorations fabricated with resin-based CAD/CAM materials. J Oral Sci. 2020;62(4):353–355. doi: 10.2334/josnusd.20-0195
  26. Sirous S, Navadeh A, Ebrahimgol S, Atri F. Effect of preparation design on marginal adaptation and fracture strength of ceramic occlusal veneers: a systematic review. Clin Exp Dent Res. 2022;8(6):1391–1403. doi: 10.1002/cre2.653
  27. Gresnigt MMM, Sugii MM, Johanns KBFW, van der Made SAM. Comparison of conventional ceramic laminate veneers, partial laminate veneers and direct composite resin restorations in fracture strength after aging. J Mech Behav Biomed Mater. 2021;114:104172. doi: 10.1016/j.jmbbm.2020.104172
  28. Araujo E, Perdigão J. Anterior veneer restorations — an evidence-based minimal-intervention perspective. J Adhes Dent. 2021;23(2):91–110. doi: 10.3290/j.jad.b1079529
  29. Schlichting LH, Resende TH, Reis KR, et al. Ultrathin CAD-CAM glass-ceramic and composite resin occlusal veneers for the treatment of severe dental erosion: an up to 3-year randomized clinical trial. J Prosthet Dent. 2022;128(2):158.e1–158.e12. doi: 10.1016/j.prosdent.2022.02.009

Copyright (c) 2024 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies