Overview of clinical and laboratory evaluation results of the effectiveness of digital methods for knowledge-based fabrication of complete removable acrylic dentures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This article provides an overview of the conceptual studies of modern digital technologies for the fabrication of complete removable acrylic dentures. Analysis of data of subtractive and additive methods of digital manufacturing shows the advantages of digital CAD/CAM methods over traditional methods. The use of known prepolymerized acrylic blocks in the subtractive milling method has enabled achieving high physical and mechanical properties, optimal spatial accuracy, and minimal thickness of the fabricated dentures. Moreover, residual monomer volume reduction in solid polymer blocks has allowed the high biological inertness and safety of the fabricated structures for prosthetic bed tissues and the patient’s body. Layer-by-layer printing of removable dentures by fused polymer deposition modeling technology results in high spatial accuracy of constructing structures of any degree of complexity and reduced total production time of removable dentures.

Despite the intensity of implementation of digital CAD/CAM technologies in the practice of complete removable denture manufacturing, the search for alternative methods of modernization of the known traditional means and methods continues. However, we believe that automation and digitalization of the clinical and laboratory manufacturing of complete removable acrylic dentures has clear prospects for the total replacement of compression pressing and hot polymerization techniques of acrylates. In summary, the potential prospect in the future is a global reassessment of traditional concepts for the fabrication of complete removable dentures, considering the formation of an innovative digital CAD/CAM philosophy and the introduction of computer intelligent systems.

作者简介

Andrey Verkhovskiy

Smolensk State Medical University

Email: a.verhovskii@mail.ru
ORCID iD: 0000-0002-1627-9099
SPIN 代码: 7617-8166

MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, 2 Kashena street, 214012 Smolensk

Samvel Apresyan

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: apresyan@rudn.ru
ORCID iD: 0000-0002-3281-707X
SPIN 代码: 6317-9002

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Aleksandr Stepanov

Peoples’ Friendship University of Russia named after Patrice Lumumba

编辑信件的主要联系方式.
Email: stepanovmd@list.ru
ORCID iD: 0000-0002-6543-0998
SPIN 代码: 5848-6077

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

参考

  1. Gvetadze RSh, Andreeva SN, Butova VG, Chegerova TI. Development of an expert assessment of the quality of dental care. Stomatology. 2021;100(1):73–78. EDN: UBWBCT doi: 10.17116/stomat202110001173
  2. Kulakov AA, Andreeva SN, Furchakova AV. Internal control of the quality and safety of medical activities in the field of information interaction between patient and medical organization. Stomatology. 2022;101(1):79–83. EDN: AOIOIC doi: 10.17116/stomat202210101179
  3. Aksenova EI, Gorbatov SY. Digitalization of healthcare: experience and examples of transformation in healthcare systems in the world. Moscow: GBU «NIIOZMM DZM»; 2020. 44 p. (In Russ). EDN: FKKUNV
  4. Muslov SA, Ruzuddinov NS, Arutyunov SD, et al. Quality of life of patients with complete loss of teeth and psychometric properties of the questionnaire OHIP-20 DG. Part 3. Investigation of latent variables. Russian Journal of Dentistry. 2021;25(6):483–493. EDN: HEFVPP doi: 10.17816/1728-2802-2021-25-6-483-493
  5. Dreval AV, Dreval OA. Digital medicine. A guide for doctors. Moscow: GJeOTAR-Media; 2023. 272 p. (In Russ).
  6. Ryakhovsky AN, Stepanov AG, Apresyan SV, Zolotarev NN. Combined use of 2D- and 3D- simulation results for identical smile prototype production (clinical case). Clinical Dentistry (Russia). 2021;24(4):92–95. EDN: OCBRZV doi: 10.37988/1811-153X_2021_4_92
  7. Bessonova EA, Nurieva NS. Classical and digital option to index assessment of the oral hygiene. Stomatology. 2022;101(6):14–17. EDN: QDCEYI doi: 10.17116/stomat202210106114
  8. Bilgin MS, Baytaroğlu EN, Erdem A, Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. Eur J Dent. 2016;10(2):286–291. doi: 10.4103/1305-7456.178304
  9. Semenova VA. Optimization and confirmation of the clinical and economic efficiency of the dental prosthetics protocol for patients with complete absence of teeth using digital dental technologies [dissertation]. 2022. 183 p. (In Russ). EDN: TRJEBX
  10. Apresyan SV, Stepanov AG, Antonik MM, et al. Comprehensive digital planning of dental treatment. Moscow: Mozartika; 2020. 396 p. (In Russ). EDN: BFHWAT
  11. Ryakhovsky AN, Muradov MA, Erokhin VA. Lower jaw virtual reposition accuracy research. Stomatology. 2022;101(4):53–60. EDN: KVGLBG doi: 10.17116/stomat202210104153
  12. Skorulska A, Piszko P, Rybak Z, et al. Review on polymer, ceramic and composite materials for CAD/CAM indirect restorations in dentistry-application, mechanical characteristics and comparison. Materials (Basel). 2021;14(7):1592. doi: 10.3390/ma14071592
  13. Chladek G, Pakieła K, Pakieła W, et al. Effect of antibacterial silver-releasing filler on the physicochemical properties of poly(methylmethacrylate) denture base material. Materials (Basel). 2019;12(24):4146. doi: 10.3390/ma12244146
  14. Grunnert I. A patient with complete adentia — what is to be done? New in Dentistry. 2013;(2):4–9. (In Russ).
  15. Nesterov AM. A comprehensive approach to orthopedic treatment of patients with a combination of complete and partial absence of teeth on the jaws [dissertation]. Samara; 2016. 316 p. (In Russ). EDN: SNHNGB
  16. Ryakhovsky AN. Digital dentistry. Moscow: Avantis; 2010. 282 p. (In Russ).
  17. Ertesyan AR, Sadykov MI, Nesterov AM. The impact of 3D printing direction on the accuracy of manufacturing complete dentures using SLA technology. International Research Journal. 2021;(1):66–72. EDN: NKEPAU doi: 10.23670/IRJ.2021.103.1.066
  18. Bugaev IV. In the role of computer simulation in additive technologies. International Research Journal. 2016;(5-3):64–66. EDN: VXMFNP doi: 10.18454/IRJ.2016.47.054
  19. Ertesyan AR, Sadykov MI, Nesterov M. Overview of 3D printing technologies in dentistry. Medical & Pharmaceutical Journal “Pulse”. 2020;22(10):15–18. EDN: NGOLGM doi: 10.26787/nydha-2686-6838-2020-22-10-15-18
  20. Gad MM, Albazroun Z, Aldajani F, et al. Repair bond strength of conventionally and digitally fabricated denture base resins to auto-polymerized acrylic resin: surface treatment effects in vitro. Materials (Basel). 2022;15(24):9062. doi: 10.3390 /ma15249062
  21. Srinivasan M, Cantin Y, Mehl A, et al. CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clin Oral Investig. 2017;21(6):2007–2019. doi: 10.1007/s00784-016-1989-7
  22. Ivanov SYu, Karasenkov YaN, Latuta NV, et al. Application of metal nanoparticles and their oxides in dental composite materials and structures: a review (part I). Clinical Dentistry (Russia). 2022;25(4):159–165. EDN: HMAOJC doi: 10.37988/1811-153X_2022_4_159
  23. Zidan S, Silikas N, Alhotan A, et al. Investigating the mechanical properties of ZrO2-impregnated PMMA nanocomposite for denture-based applications. Materials (Basel). 2019;12(8):1344. doi: 10.3390/ma12081344
  24. Al-Harbi FA, Abdel-Halim MS, Gad MM, et al. Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of PMMA denture base. J Prosthodont. 2019;28(1):e417–e425. doi: 10.1111/jopr.12969
  25. Sabbatini A, Lanari S, Santulli C, Pettinari C. Use of almond shells and rice husk as fillers of poly(methyl methacrylate) (PMMA) composites. Materials (Basel). 2017;10(8):872. doi: 10.3390/ma10080872
  26. Somani MV, Khandelwal M, Punia V, Sharma V. The effect of incorporating various reinforcement materials on flexural strength and impact strength of polymethylmethacrylate: a meta-analysis. J Indian Prosthodont Soc. 2019;19(2):101–112. doi: 10.4103/jips.jips_313_18
  27. Kosyreva TF, Voeykova OV. Clinical and laboratory studies of light-curing base material for the manufacture of intraoral orthodontic devices. Stomatology. 2021;100(5):58–61. EDN: GCOOZQ doi: 10.17116/stomat202110005158
  28. Semenova VA, Terehov MS, Apresyan SV, Stepanov AG. Clinical justification of the use of digital technologies in prosthetics of patients with complete absence of teeth. Clinical Dentistry. 2022;25(1):98–106. doi: 10.37988/1811-153X_2022_1_98
  29. Mangano F, Mangano C, Margiani B, Admakin O. Combining intraoral and face scans for the design and fabrication of computer-assisted design/computer-assisted manufacturing (CAD/CAM) polyether-ether-ketone (PEEK) implant-supported bars for maxillary overdentures. Scanning. 2019;2019:4274715. doi: 10.1155/2019/4274715
  30. Vokulova YuA, Zhulev EN. Results of the study of digital images of the bases of complete removable prostheses made using 3D printing and traditional technologies. Clinical Dentistry. 2021;(1):131–135. EDN: JZKKQO doi: 10.37988/1811-153X_2021_1_131
  31. Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2016;116(2):249–256. doi: 10.1016/j.prosdent.2016.02.017
  32. Chen H, Wang H, Lv P, et al. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. Biomed Res Int. 2015;2015:453968. doi: 10.1155/2015/453968
  33. Kostić M, Igić M, Gligorijević N, et al. The use of acrylate polymers in dentistry. Polymers (Basel). 2022;14(21):4511. doi: 10.3390/polym14214511
  34. Çakmak G, Molinero-Mourelle P, De Paula MS, et al. Surface roughness and color stability of 3D-printed denture base materials after simulated brushing and thermocycling. Materials (Basel). 2022;15(18):6441. doi: 10.3390/ma15186441
  35. Jain S, Sayed ME, Shetty M, et al. Physical and mechanical properties of 3D-printed provisional crowns and fixed dental prosthesis resins compared to cad/cam milled and conventional provisional resins: a systematic review and meta-analysis. Polymers (Basel). 2022;14(13):2691. doi: 10.3390/polym14132691
  36. Kosyreva TF, Lebedenko IYu, Voeykova OV, et al. Reinforcement of photosensitive material for bases of orthodontic appliances. Stomatology. 2021;100(4):83–87. EDN: KRQWYP doi: 10.17116/stomat202110004183
  37. Shinawi LA. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base. Electron Physician. 2017;9(5):4281–4288. doi: 10.19082/4281
  38. Kraemer Fernandez P, Unkovskiy A, Benkendorff V, et al. Surface characteristics of milled and 3D printed denture base materials following polishing and coating: an in-vitro study. Materials (Basel). 2020;13(15):3305. doi: 10.3390/ma13153305
  39. Janeva N, Kovacevska G, Janev E. Complete dentures fabricated with CAD/CAM technology and a traditional clinical recording method. Open Access Maced J Med Sci. 2017;5(6):785–789. doi: 10.3889/oamjms.2017.169
  40. Arutyunov SD, Polyakov DI, Muslov SA, et al. Study of the quality of life of patients using the QL PAER specific questionnaire after prosthetic auricular reconstruction. Clinical Dentistry. 2021;25(5):387–397. EDN: HMEZGY doi: 10.17816/1728-2802-2021-25-5-387-397
  41. Muslov SA, Nokhrin DYu, Arutyunov SD, et al. Quality of life of patients with complete loss of teeth and psychometric properties of the OHIP-20 DG questionnaire. Part 4. Parameter estimation using nonlinear principal component analysis using the CatPCA algorithm. Russian Journal of Dentistry. 2021;25(6):495–503. EDN: YXMLYE doi: 10.17816/1728-2802-2021-25-6-495-503
  42. Rozov RA, Trezubov VN, Popov VL, et al. Automated digital superimposition of the 3D model and archival photographs of full removable dentures in forensic dentistry. Stomatology. 2022;101(3):61–69. EDN: NAQEDB doi: 10.17116/stomat202210103161
  43. Grachev DI, Tsarev VN, Majidova E.R, et al. Physical, mechanical and microbiological characteristics of the first domestic base material hybrid polymerization. Clinical Dentistry. 2021;(1):144–148. EDN: SWZZXB doi: 10.37988/1811-153X_2021_1_144
  44. Arai K, Tanaka Y, Matsuda S, et al. Complete denture fabrication using digitally fabricated copy dentures for a patient with moderate dementia. Case Rep Dent. 2021;2021:9385095. doi: 10.1155/2021/9385095
  45. Oweis Y, Ereifej N, Al-Asmar A, Nedal A. Factors affecting patient satisfaction with complete dentures. Int J Dent. 2022;2022:9565320. doi: 10.1155/2022/9565320
  46. Janeva NM, Kovacevska G, Elencevski S, et al. Advantages of CAD/CAM versus conventional complete dentures — a review. Open Access Maced J Med Sci. 2018;6(8):1498–1502. doi: 10.3889/oamjms.2018.308
  47. Babich VV. Clinical case of temporary dentures installing during implant treatment. Clinical Dentistry. 2021;24(3):109–111. EDN: PSXYTV doi: 10.37988/1811-153X_2021_3_109
  48. Bonnet G, Batisse C, Bessadet M, et al. A new digital denture procedure: a first practitioners appraisal. BMC Oral Health. 2017;17(1):155. doi: 10.1186/s12903-017-0440-z
  49. Uspenskaya OA, Spiridonova SA, Bragina OM, Ruzina KA. Medical education in the context of expedited digitalization of educational process during the COVID-19 pandemic. Clinical Dentistry. 2021;24(2):109–111. EDN: PSXYTV doi: 10.37988/1811-153X_2021_3_109
  50. Steinmassl O, Offermanns V, Stöckl W, et al. In vitro analysis of the fracture resistance of cad/cam denture base resins. Materials (Basel). 2018;11(3):401. doi: 10.3390/ma110304011
  51. Ishida Y, Kuwajima Y, Kobayashi T, et al. Current Implementation of digital dentistry for removable prosthodontics in US dental schools. Int J Dent. 2022;2022:7331185. doi: 10.1155/2022/7331185
  52. May LW, John J, Seong LG, et al. Comparison of cooling methods on denture base adaptation of rapid heat-cured acrylic using a three-dimensional superimposition technique. J Indian Prosthodont Soc. 2021;21(2):198–203. doi: 10.4103/jips.jips_41_21
  53. Cheng C, Cheng X, Dai N, et al. Facial morphology prediction after complete denture restoration based on principal component analysis. J Oral Biol Craniofac Res. 2019;9(3):241–250. doi: 10.1016/j.jobcr.2019.06.002
  54. Apresyan SV, Stepanov AG, Gadzhiev MA, et al. Clinical efficacy of occlusive splints manufactured by computer modeling and volumetric printing in patients with bruxism: research results and clinical case. Russian Journal of Dentistry. 2022;26(3):199–210. EDN: QPTDLN doi: 10.17816/1728-2802-2022-26-3-199-211
  55. Kolsanov AV, Popov NV, Ayupova IO, Ivleva AI. Consistency of expert opinions on localization of the reference points for studying a soft tissue face profile in digital teleradiological images of the skull lateral projection. Stomatology. 2021;100(4):49–54. EDN: XXZZYS doi: 10.17116/stomat202110004149
  56. Infante L, Yilmaz B, McGlumphy E, Finger I. Fabricating complete dentures with CAD/CAM technology. J Prosthet Dent. 2014;111(5):351–355. doi: 10.1016/j.prosdent.2013.10.014
  57. Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspective. J Prosthet Dent. 2013;109(6):361–366. doi: 10.1016/S0022-3913(13)60318-2
  58. Schwindling FS, Stober T. A comparison of two digital techniques for the fabrication of complete removable dental prostheses: a pilot clinical study. J Prosthet Dent. 2016;116(5):756–763. doi: 10.1016/j.prosdent.2016.03.022
  59. Unkovskiy A, Wahl E, Zander AT, et al. Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. BMC Oral Health. 2019;19(1):46. doi: 10.1186 /s12903-019-0733-5

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##