Influence of soft tissue on the reparative abilities of the jaw bone tissue in patients with dentoalveolar lesions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Treating patients with a jaw bone defect requires eliminating the defect, restoring dentition, and providing long-term support for the functional state of the dental system. However, dental damage reduces the reparative capabilities of the jaw bone tissue. Therefore, when developing ways to repair such defects, the proportion of soft tissue in the bone defect must be determined.

AIM: To study the effect of soft-tissue elements on the reparative abilities of jaw bone tissue.

MATERIALS AND METHODS: This study included 98 people with acquired combined jaw bone defects. The material was taken during a surgical intervention to study the tissue environment and the characteristics of the transformation of the tissues surrounding the defect. The samples were sent for histological examination.

RESULTS: Microscopic examination of the histological sections obtained from the area of the jaw bone defects revealed the proliferation of a multilayer flat non-corneating epithelium with “creeping” and massive ingrowth of the epithelium into the area of the bone defect. The epithelium had advanced into the underlying bone, which led to atrophy and destruction of the bone over the entire area of the defect, increasing the volume of the defect. An epithelial-connective tissue complex lined the bone surface of the defect, replacing the periosteum.

CONCLUSIONS: The morphology of the tissues surrounding the area of a bone defect suggests a decrease in cambial bone elements. Treating jaws with bone defects requires eliminating the soft tissue that fills the bone defect, followed by guided bone regeneration using a granular osteoconductive graft and a resorbable collagen membrane.

About the authors

Oleg V. Slesarev

Samara State Medical University

Author for correspondence.
Email: o.slesarev@gmail.com
ORCID iD: 0000-0003-2759-135X
SPIN-code: 4507-6276

MD, Dr. Sci. (Med.), Assistant Professor

Russian Federation, Samara

Darya V. Malchikova

Samara State Medical University

Email: dvmalchikova@gmail.com
ORCID iD: 0000-0001-9077-2888
SPIN-code: 2588-2812

Postgraduate

Russian Federation, Samara

Yuliya R. Yunusova

Samara State Medical University

Email: kaf_patanat@samsmu.ru
ORCID iD: 0000-0003-0026-309X
SPIN-code: 8808-4658

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Samara

Olesia V. Kulakova

Samara State Medical University

Email: olesvk@mail.ru
ORCID iD: 0000-0002-8318-0355
SPIN-code: 1805-0892

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Samara

Irina F. Nefedova

Samara State Medical University

Email: i.f.nefedova@samsmu.ru
ORCID iD: 0000-0002-7453-3120
SPIN-code: 2100-4649

Сhief Specialist of Center for Biomedical Cell Products of NTI “Bionic engineering in Medicine”

Russian Federation, Samara

Vyacheslav G. Belanov

Samara State Medical University

Email: slava.belanov@inbox.ru
ORCID iD: 0000-0002-5167-6479

Resident

Russian Federation, Samara

References

  1. Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23 Suppl. 5:S1-21. doi: 10.1111/j.1600-0501.2011.02375.x
  2. Murphy MP, Irizarry D, Lopez M, et al. The Role of Skeletal Stem Cells in the Reconstruction of Bone Defects. J Craniofac Surg. 2017;28(5):1136–1141. doi: 10.1097/SCS.0000000000003893
  3. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696–711. doi: 10.1038/s41580-020-00279-w
  4. Jiang SY, Shu R, Xie YF, Zhang SY. Age-related changes in biological characteristics of human alveolar osteoblasts. Cell Prolif. 2010;43(5):464–470. doi: 10.1111/j.1365-2184.2010.00696.x
  5. Elsalanty ME, Genecov DG. Bone Grafts in Craniofacial Surgery. Craniomaxillofacial Trauma Reconstr. 2009;2(3):125–134. doi: 10.1055/s-0029-1215875
  6. Slesarev OV, Malchikova DV, Bayricov IM. Guided bone regeneration biologically transformed multicomponent graft [Internet]. Journal of Dental Research. [cited 2023 May 17]. Available from: https://iadr.abstractarchives.com/abstract/21iags-3575687/guided-bone-regeneration-biologically-transformed-multicomponent-graft
  7. Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000. 2021;86(1):157–187. doi: 10.1111/prd.12368
  8. Jafri Z, Sultan N, Ahmad N, Daing A. An infrequent clinical case of mucosal fenestration: Treated with an interdisciplinary approach and regenerative therapy. J Indian Soc Periodontol. 2019;23(2):168–171. doi: 10.4103/jisp.jisp_325_18
  9. Anikumar R, Koduganti RR, Harika TSL, Rajaram H. Ridge Augmentation Is a Prerequisite for Successful Implant Placement: A Literature Review. Cureus. 2022;14(1):e20872. doi: 10.7759/cureus.20872
  10. Zhao R, Yang R, Cooper PR, et al. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules. 2021;26(10):3007. doi: 10.3390/molecules26103007
  11. Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone. 2022;154:116256. doi: https://doi.org/10.1016/j.bone.2021.116256
  12. The certificate of state registration of software № 2021666327 / 12.10.2021. Rusanov NV, Slesarev ОV, Bolotov МА, Malchikova DV. Programma dlya prognosticheskogo raschyota neobhodimogo ob’’yoma granulirovannogo kostno-plasticheskogo materiala pri ustranenii defektov kosti. (In Russ).
  13. Alias MA, Buenzli PR. Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours. Biomech Model Mechanobiol. 2018;17(5):1357–1371. doi: 10.1007/s10237-018-1031-x
  14. Patent RUS № 2766978 C1/ 16.03.2022. Slesarev OV, Kolsanov AV, Bairicov IM, Malchikova DV, Tumina ОV, Volchkov SE, Ovchinnikov PA, Postnikov MA, Chaikin MB. Mnogokomponentnyi osteogennyi transplantat dlya khirurgicheskogo ustraneniya vrozhdennykh i priobretennykh defektov kosti chelyustei. (In Russ). Available from: https://yandex.ru/patents/doc/RU2766978C1_20220316
  15. Khoury F, Hanser T. Mandibular bone block harvesting from the retromolar region: A 10-year prospective clinical study. Int J Oral Maxillofac Implant. 2015;30:688–697. doi: 10.11607/jomi.4117
  16. Khoury F, Dolieux R. The Bone Core Technique for the Augmentation of Limited Bony Defects: Five-Year Prospective Study with a New Minimally Invasive Technique. Int J Periodontics Restor Dent. 2018;38:199–207. doi: 10.11607/prd.3467
  17. Scarano A, Lorusso F, Ravera L, Mortellaro C, Piattelli A. Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep. Biomed Res Int. 2016;2016:4086870. doi: 10.1155/2016/4086870
  18. Patent RUS № 2758570 C1/29.10.2021. Slesarev OV, Bajrikov IM, Malchikova DV, Platonov VI, Iordanishvili AK, Muzykin MI, Gribkova OV, Komarova MV. Sposob degazacii granulirovannogo osteokonduktivnogo kostnoplasticheskogo materiala. (In Russ). Available from: https://patenton.ru/patent/RU2758570C1
  19. Brouwers JEIG, van der Vorm LN, Buis S, et al. Implant stability in patients treated with platelet-rich fibrin and bovine bone substitute for alveolar ridge preservation is associated with peripheral blood cells and coagulation factors. Clin Exp Dent Res. 2020;6(2):236–243. doi: 10.1002/cre2.263.
  20. Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA. 2014;111:12097–12102.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A soft-tissue fragment from the area of a bone defect. Layers of multilayer flat epithelium. Ingrowth of the epithelium into the underlying tissue. Arrows indicate the basement membrane of the epithelium. Hematoxylin-eosin stain, ×150.

Download (263KB)
3. Fig. 2. A soft-tissue fragment from the area of the bone defect. Ingrowth of the epithelium into the underlying tissue. Hematoxylin-eosin stain, ×200.

Download (464KB)
4. Fig. 3. Soft-tissue fragment from the bone defect area. A fragment of granulation tissue. Angiogenesis. Arrows indicate the presence of numerous small thin-walled vessels in the microcirculatory bed. Van Gieson stain, ×200.

Download (288KB)
5. Fig. 4. A fragment of bone tissue from the area of the bone defect. Hematoxylin-eosin, stain ×200.

Download (226KB)
6. Fig. 5. Fragment of bone regenerated 120 days after transplantation. 1-newly formed bone tissue, 2-bone graft, 3-coarse-fibrous connective tissue, 4-vessels. Hematoxylin-eosin stain, ×60.

Download (304KB)
7. Fig. 6. Fragment of newly formed bone tissue 120 days after transplantation. Primary osteogenic islets form in connective tissue (A), graft biodegradation foci (B), osteogenesis foci (C). Hematoxylin-eosin stain, ×150.

Download (288KB)
8. Fig. 7. Fragment of newly formed bone tissue 120 days after transplantation. Osteoid formation (B) in the connective tissue stroma at the border with the bone graft (A). Hematoxylin-eosin stain, ×150.

Download (340KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies