Mechanism of light polymerization of composites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The article presents a review of the chemical aspects of the reaction of light polymerization of composites in dental practice. This reaction refers to free radical polymerization reactions, with photons as activators. In dentistry, composites are classified as chemically cured, light cured, doubly cured, and thermally cured. This depends on the origin of the activation energy of free radical polymerization of methacrylates. Chemically, dental composites are usually a mixture of four main components: an organic polymer matrix, an inorganic filler, an appret compound, a binder matrix and filler, and an initiator–accelerator system. The radical polymerization process includes four main stages. The first stage is activation; in the case of light cured dental composites, it is photoactivation. In this case, a photoinitiator molecule is excited, for example, camphorquinone, which is widely used in the production of dental composite materials. If a free radical is formed, the polymerization process is similar for all composite materials based on a methacrylate organic matrix. The only difference is exactly how free radicals are formed and the rate of their formation. Under the influence of light quanta, the carbon atom of the ketone group of camphorquinone passes into an excited state, which allows the excited photoinitiator molecule to interact with two methacrylate molecules by a double bond. The double bond gives one electron to the excited camphorquinone molecule, and the second electron acts as a free radical agent; in other words, a macroradical is formed–a monomer molecule that can attach other monomer molecules to itself.

About the authors

Galina E. Bordina

Tver State Medical University

Author for correspondence.
Email: gbordina@yandex.ru

Cand. Sci. (Biol.), Associate Professor

Russian Federation, Tver

Nadezhda P. Lopina

Tver State Medical University

Email: nadezhda_lopina@mail.ru

Cand. Sci. (Chem.), Professor

Russian Federation, Tver

Gleb S. Parshin

Tver State Medical University

Email: gleb180699@gmail.com

Student

Russian Federation, Tver

Alexey A. Andreev

Tver State Medical University

Email: aandreev01@yandex.ru
Russian Federation, Tver

Ilya A. Nekrasov

RUDN University

Email: ilya.nekrasov.01@bk.ru

Student

Russian Federation, Moscow

References

  1. Lalatovich AM, Vaniev MA, Sidorenko NV, et al. Photopolymerizable compositions and light sources for dental practice (review). Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2021;(12):7–22. (In Russ). doi: 10.35211/1990-5297-2021-12-259-7-22
  2. Riva YR, Rahman SF. Dental composite resin: A review. AIP Conf Proc. 2019;2193(1):020011. doi: 10.1063/1.5139331
  3. Kim DH, Sung AY. Photopolymerization and Characterization of Dental Resin Cement Containing Nano Material. J Nanosci Nanotechnol. 2018;18(9):6122–6126. doi: 10.1166/jnn.2018.15605
  4. Burkova AA, Shcherbakova SB. Choice of dental curing lamp for Filtek Ultimate light-curing composite material. Bulletin of Medical Internet Conferences. 2018;8(7):260. (In Russ).
  5. Zhou X, Huang X, Li M, et al. Development and status of resin composite as dental restorative materials. J Appl Polym Sci. 2019;136(44):48180. doi: 10.1002/app.48180
  6. Bait Said OM, Razumova SV, Velichko EV. On the issue of composite materials. Russian Journal of Dentistry. 2020;24(4):278–282. (In Russ). doi: 10.17816/1728-2802-2020-24-4-278-282
  7. Lima AF, Salvador MVO, Dressano D, et al. Increased rates of photopolymerisation by ternary type II photoinitiator systems in dental resins. J Mech Behav Biomed Mater. 2019;98:71–78. doi: 10.1016/j.jmbbm.2019.06.005
  8. Kim DH, Lee MJ, Sung AY. Preparation and Characterization of Novel Dental Material with High Shear Bond Strength. J Nanosci Nanotechnol. 2018;18(9):6355–6359. doi: 10.1166/jnn.2018.15654
  9. Bobyleva YuV, Petrova AP, Korotkov MM. Evaluation of the physical and technical characteristics of photopolymerizing devices in dentistry. Eurasian Scientific Association. 2018;(1–2):96–98. (In Russ).
  10. Koulaouzidou EA, Roussou K, Sidiropoulos K, et al. Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants. Food Chem Toxicol. 2018;120:536–543. doi: 10.1016/j.fct.2018.07.042
  11. Fugolin APP, Pfeifer CS. New Resins for Dental Composites. J Dent Res. 2017;96(10):1085–1091. doi: 10.1177/0022034517720658
  12. Topa M. Light cured dental composite resins [Internet]. Encyclopedia [cited 2022 June 7]. Available from: https://encyclopedia.pub/item/revision/cc56ab086bd8c94dd72116f4b2e9eb6d.
  13. Le Gars M, Bras J, Salmi-Mani H, et al. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Carbohydr Polym. 2020;234:115899. doi: 10.1016/j.carbpol.2020.115899
  14. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017;31(Suppl. 1):e61. doi: 10.1590/1807-3107BOR-2017.vol31.0061
  15. Palialol AR, Martins CP, Dressano D, et al. Improvement on properties of experimental resin cements containing an iodonium salt cured under challenging polymerization conditions. Dent Mater. 2021;37(10):1569–1575. doi: 10.1016/j.dental.2021.08.006
  16. Gushchin AA, Adamchik AA. Methods for improving the physicomechanical and chemical properties of composite filling materials. Medical and Pharmaceutical Journal “Pulse”. 2020;22(2):36–41. (In Russ). doi: 10.26787/nydha-2686-6838-2020-22-2-36-41
  17. Favarão J, Oliveira DCRS, Rocha MG, et al. Solvent Degradation and Polymerization Shrinkage Reduction of Resin Composites Using Isobornyl Methacrylate. Braz Dent J. 2019;30(3):272–278. doi: 10.1590/0103-6440201802525
  18. Albuquerque PPAC, Rodrigues EC, Schneider LF, et al. Effect of an acidic sodium salt on the polymerization behavior of self-adhesive resin cements formulated with different adhesive monomers. Dent Mater. 2018;34(9):1359–1366. doi: 10.1016/j.dental.2018.06.022
  19. Wang R, Li Y, Hass V, et al. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers — Part 2: Effects on polymerization, microhardness and leaching of adhesives. Dent Mater. 2021;37(7):1193–1201. doi: 10.1016/j.dental.2021.04.010
  20. Kruly PC, Giannini M, Pascotto RC, et al. Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One. 2018;13(2):e0191942. doi: 10.1371/journal.pone.0191942
  21. Inami C, Shimizu H, Suzuki S, et al. Study on the performance of methyl methacrylate polymerization: Comparison of partially oxidized tri-n-butylborane and benzoyl peroxide with aromatic tertiary amines. Dent Mater J. 2019;38(3):430–436. doi: 10.4012/dmj.2018-166
  22. He J, Garoushi S, Säilynoja E, et al. The effect of adding a new monomer “Phene” on the polymerization shrinkage reduction of a dental resin composite. Dent Mater. 2019;35(4):627–635. doi: 10.1016/j.dental.2019.02.006
  23. Yoshihara K, Nagaoka N, Benino Y, et al. Touch-Cure Polymerization at the Composite Cement-Dentin Interface. J Dent Res. 2021;100(9):935–942. doi: 10.1177/00220345211001020
  24. Fugolin AP, de Paula AB, Dobson A, et al. Alternative monomer for BisGMA-free resin composites formulations. Dent Mater. 2020;36(7):884–892. doi: 10.1016/j.dental.2020.04.009
  25. Fugolin APP, Costa AR, Correr-Sobrinho L, et al. Toughening and polymerization stress control in composites using thiourethane-treated fillers. Sci Rep. 2021;11(1):7638. doi: 10.1038/s41598-021-87151-9
  26. Fugolin AP, Dobson A, Ferracane JL, Pfeifer CS. Effect of residual solvent on performance of acrylamide-containing dental materials. Dent Mater. 2019;35(10):1378–1387. doi: 10.1016/j.dental.2019.07.003
  27. Sprick E, Becht JM, Graff B, et al. New hydrogen donors for amine-free photoinitiating systems in dental materials. Dent Mater. 2021;37(3):382–390. doi: 10.1016/j.dental.2020.12.013
  28. Amiri P, Talebi Z, Semnani D, et al. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers. J Mater Sci Mater Med. 2021;32(7):82. doi: 10.1007/s10856-021-06557-z
  29. Salvador MV, Fronza BM, Pecorari VGA, et al. Physicochemical properties of dental resins formulated with amine-free photoinitiation systems. Dent Mater. 2021;37(9):1358–1365. doi: 10.1016/j.dental.2021.06.005
  30. Fugolin AP, Dobson A, Mbiya W, et al. Use of (meth)acrylamides as alternative monomers in dental adhesive systems. Dent Mater. 2019;35(5):686–696. doi: 10.1016/j.dental.2019.02.012
  31. Sinha J, Dobson A, Bankhar O, et al. Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization. Dent Mater. 2020;36(2):249–256. doi: 10.1016/j.dental.2019.11.012

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Methacrylate monomers included in dental composites [12]

Download (168KB)
3. Fig. 2. Excitation of the camphoroquinone molecule and further formation of two methacrylate monoradicals

Download (101KB)
4. Fig. 3. Mechanism of a bimolecular photoinitiating system containing camphoroquinone and tertiary amine

Download (91KB)
5. Fig. 4. Mechanism of reaction of tertiary amine with oxygen.

Download (78KB)
6. Fig. 5. Formation of four radical centers, where CQ — camphoroquinone, AH — protonated amine, M — methacrylate

Download (59KB)
7. Fig. 6. Two mechanisms of the third final stage of polymerization: a) disproportionation reaction; b) recombination reaction

Download (61KB)

Copyright (c) 2022 Bordina G.E., Lopina N.P., Parshin G.S., Andreev A.A., Nekrasov I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies