几乎健康的年轻男性在短暂暴露于常压等碳酸血症性与高碳酸血症性低氧条件下心室复极反应的研究
- 作者: Zamenina E.V.1, Ivonina N.I.1, Fokin A.A.2, Roshchevskaya I.M.1
-
隶属关系:
- Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
- Pitirim Sorokin Syktyvkar State University
- 期: 卷 32, 编号 2 (2025)
- 页面: 123-134
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314577
- DOI: https://doi.org/10.17816/humeco643503
- EDN: https://elibrary.ru/WQWAIA
- ID: 314577
如何引用文章
全文:
详细
论证。低氧因素对人体心肺系统功能的影响已有充分研究。低氧与高碳酸血症的联合影响可降低机体各功能系统对缺氧状态的不良反应,并在主观上提高对急性低氧的耐受性。
目的。探讨在吸入不同二氧化碳浓度的常压低氧条件下,几乎健康的未训练年轻男性在心室复极期的心脏电活动变化。
方法。开展了一项单中心前瞻性实验研究。研究对象为几乎健康、无训练的青年男性。排除标准包括慢性支气管肺疾病、心血管疾病及近期急性呼吸道病毒感染史。受试者按所接受的干预随机分为两组:第1组接受等碳酸血症性低氧暴露,第2组接受高碳酸血症性低氧暴露。等碳酸血症性与高碳酸血症性低氧状态通过佩戴面罩吸入混合气体15分钟进行模拟。根据II导联心电图数据,分析心室复极期心电场正负极值的振幅-时间参数,测量QT、J–Tpeak和Tpeak–Tend间期,并根据Bazett公式进行校正。
结果。与高碳酸血症性低氧相比,等碳酸血症性低氧引起SpO2和心率的变化更为明显。在两组SpO2值相近的情况下,复极期时间参数的分析表明,低氧混合气体中的高碳酸成分可抵消几乎所有心电图所测间期时长的变化程度。
结论。所开展的研究显示,在不同CO2含量的低氧暴露下,等碳酸血症性低氧相比高碳酸血症性低氧对几乎健康的年轻男性心室复极过程中的心脏电活动产生了更明显的应激影响。
关键词
作者简介
Elena V. Zamenina
Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: e.mateva@mail.ru
ORCID iD: 0000-0002-3438-6365
SPIN 代码: 2894-6435
俄罗斯联邦, Syktyvkar
Natalya I. Ivonina
Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Email: bdr13@mail.ru
ORCID iD: 0000-0002-5802-3753
SPIN 代码: 8667-3261
Cand. Sci. (Biology)
俄罗斯联邦, SyktyvkarAndrei A. Fokin
Pitirim Sorokin Syktyvkar State University
Email: fokin90@inbox.ru
ORCID iD: 0000-0002-2038-2515
SPIN 代码: 1060-3535
俄罗斯联邦, Syktyvkar
Irina M. Roshchevskaya
Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Email: compcard@mail.ru
ORCID iD: 0000-0002-6108-1444
SPIN 代码: 5424-2991
Dr. Sci. (Biology), Professor, Сorresponding Member of the Russian Academy of Sciences
俄罗斯联邦, Syktyvkar参考
- Hitrov NK, Paukov VS. Adaptation of the heart to hypoxia. Мoscow: Medicina; 1991. (In Russ.) ISBN: 5-225-00653-1 Available from: https://search.rsl.ru/ru/record/01001616365?ysclid=mbndc51z3x816503700
- Sapova NI, Ivanova AO. Gipoksiterapnya. Saint Petersburg: LLC “Medkniga"ELBI”; 2003. ISBN: 5-93979-074-7 EDN: XSXSZH
- Lukjanova LD, Ushakov IB. Problems of hypoxia: molecular, physiological and medical aspects. Мoscow: Istoki; 2004. (In Russ.) ISBN: 5-88242-282-5 EDN: QLGART
- Tessema B, Sack U, König B, et al. Effects of intermittent hypoxia in training regimes and in obstructive sleep apnea on aging biomarkers and age-related diseases: a systematic review. Frontiers in Aging Neuroscience. 2022;14: 878278. doi: 10.3389/fnagi.2022.878278 EDN: BYSJPV
- Kulikov VP, Tregub PP, Bespalov AG, Vvedenskiy AJ. Comparative efficacy of hypoxia, hypercapnia and hypercapnic hypoxia increases body resistance to acute hypoxia in rats. Patologičeskaâ fiziologiâ i èksperimentalʹnaâ terapiâ. 2013;57(3):59–61. EDN: QCTYTS
- Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. American Journal of Physiology-Cell Physiology. 2011;300(5):C951–C967. doi: 10.1152/ajpcell.00512.2010 EDN: OMQTQH
- Taccardi B, Punske B, Lux R, et al. Useful Lessons from Body Surface Mapping. Journal of Cardiovascular Electrophysiology. 1998;9(7):773–786. doi: 10.1111/j.1540-8167.1998.tb00965.x
- Kania M, Maniewski R, Zaczek R, et al. Optimal ECG lead system for exercise assessment of ischemic heart disease. Journal of Cardiovascular Translational Research. 2019;13(5):758–768. doi: 10.1007/s12265-019-09949-3 EDN: PSVYYA
- Bergquist J, Rupp L, Zenger B, et al. Body surface potential mapping: contemporary applications and future perspectives. Hearts. 2021;2(4):514–542. doi: 10.3390/hearts2040040 EDN: UDSUWR
- Medvegy M, Duray G, Pintér A, Préda I. body surface potential mapping: historical background, present possibilities, diagnostic challenges. Annals of Noninvasive Electrocardiology. 2002;7(2):139–151. doi: 10.1111/j.1542-474X.2002.tb00155.x EDN: YJIIEA
- Roshchevskaya IM. Cardioelectric field of warm blooded animals and humans. Saint Petersburg: Nauka; 2008. ISBN: 978-5-02-026284-3 EDN: RLSJCR
- de Ambroggi L, Corlan AD. Body surface potential mapping. In: Macfarlane PW, van Oosterom A, Pahlm O, et al., editors. Comprehensive Electrocardiology. London: Springer; 2010. P. 1375–1413. doi: 10.1007/978-1-84882-046-3_32
- Strelnikova SV, Panteleeva NI, Roshchevskaya IM. Spatiotemporal characteristics of the heart electrical field in the period of ventricular depolarization in athletes training endurance and strength. Human Physiology. 2014;40(5): 548–553. doi: 10.1134/S0362119714040148 EDN: UFVJBX
- Panteleeva NI, Roshchevskaya IM. Ventricular repolarization of the heart of cross-country skiers at different stages of the annual training cycle. Human Physiology. 2018;44(5):549–555. doi: 10.1134/S0362119718050134 EDN: OMKSHO
- Ivonina NI, Roshchevskaya IM. Electric field of the heart on the thorax surface in highly trained athletes during initial ventricular activity. Russian Journal of Physiology. 2023;109(9):1233–1246. doi: 10.31857/S0869813923090054 EDN: ORUDUO
- Hainsworth R, Drinkhill MJ, Rivera-Chira M. The autonomic nervous system at high altitude. Clinical Autonomic Research. 2007;17(1):13–19. doi: 10.1007/s10286-006-0395-7 EDN: XZWHVB
- Honda Y. Respiratory and circulatory activities in carotid body-resected humans. Journal of Applied Physiology. 1992;73(1):1–8. doi: 10.1152/jappl.1992.73.1.1
- Brown S, Barnes MJ, Mündel T. Effects of hypoxia and hypercapnia on human HRV and respiratory sinus arrhythmia. Acta Physiologica Hungarica. 2014;101(3):263–272. doi: 10.1556/APhysiol.101.2014.3.1
- Kovalchuk SI, Kovganko AA, Dudchenko LS, et al. Influence hypoxic-hypercapnic training. Medicina Kyrgyzstana. 2015;(5):40–45. EDN: XIFBQB
- Hool LC. Differential regulation of the slow and rapid components of guinea-pig cardiac delayed rectifier K+ channels by hypoxia. The Journal of Physiology. 2004;554(3):743–754. doi: 10.1113/jphysiol.2003.055442
- Coustet B, Lhuissier FJ, Vincent R, Richalet JP. Electrocardiographic Changes During Exercise in Acute Hypoxia and Susceptibility to Severe High-Altitude Illnesses. Circulation. 2015;131(9):786–794. doi: 10.1161/CIRCULATIONAHA.114.013144
- Zamenina EV, Panteleeva NI, Roshchevskaya IM. The heart electric field of man during ventricular repolarization under hypoxic influence. Russian Journal of Physiology. 2017;103(11):1330–1338. EDN: ZRRRDZ
- Zamenina EV, Panteleeva NI, Roshchevskaya IM. Heart electrical activity during ventricular repolarization in subjects with different resistances to hypoxia. Human Physiology. 2019;45(6):634–641. doi: 10.1134/S0362119719050207 EDN: MMPZWP
- Castro-Torres Y. Tp-e interval and Tp-e/QTc ratio: new choices for risk stratification of arrhythmic events in patients with hypertrophic cardiomyopathy. The Anatolian Journal of Cardiology. 2017;17(6):493–493. doi: 10.14744/AnatolJCardiol.2017.7865
- Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. EP Europace. 2016;19(5):712–721. doi: 10.1093/europace/euw280
- Clemente D, Pereira T, Ribeiro S. Repolarização ventricular em pacientes diabéticos: caracterização e implicações clínicas. Arquivos Brasileiros de Cardiologia. 2012;99(5):1015–1022. doi: 10.1590/S0066-782X2012005000095
- Akhundov R, Akhundova Kh. Energetical mechanisms of oxidative stress, endogenic and exogenic hypoxia. Biomedicine. 2009;(3):3–9.
- Ivonina NI, Fokin AA, Roshchevskaya IM. Body surface potential mapping during heart ventricular repolarization in male swimmers and untrained persons under hypoxic and hypercapnic hypoxia. High Altitude Medicine & Biology. 2021;22(3):308–316. doi: 10.1089/ham.2020.0103 EDN: LICCWR
- Panteleeva NI, Roshchevskaya IM. The heart electric field on the thorax surface of sportsmen-swimmers during ventricular repolarization under acute normobaric hypoxia. Russian Journal of Physiology. 2016;102(11):1383–1393. EDN: XYGYMZ
补充文件
