利用人工智能预测和预防癌症患者非肿瘤相关死亡率:ARILIS研究方案
- 作者: Valkov M.Y.1,2, Grjibovski A.М.1,3,4, Kudryavtsev A.V.1, Bogdanov M.A.1, Bogdanov D.V.1,2, Dyachenko A.A.1, Chernina V.Y.5, Belyaev M.G.5, Yaushev F.R.5,6, Panina E.V.5, Donskova M.A.5, Soboleva E.A.5, Basova M.V.5, Pisov M.E.5, Dugova M.N.5, Petrash E.A.5, Gareeva R.R.5, Shevtsov A.E.5, Volman V.V.5, Berikhanov Z.G.7, Avdeev S.N.7, Serova N.S.7, Sekacheva M.I.7, Ashikhmin Y.I.8, Belaya Z.E.9, Omelyanovskiy V.V.8, Goncharov M.Y.5,10, Gershtanskiy A.S.1, Gombolevskiy V.A.5,7,10
-
隶属关系:
- Northern State Medical University
- Arkhangelsk Regional Oncological Dispensary
- Northern (Arctic) Federal University n.a. M.V. Lomonosov
- M.K. Ammosov North-Eastern Federal University
- JSC “IRA Labs”
- Moscow Institute of Physics and Technology
- Sechenov First Moscow State Medical Univesity
- Center for Healthcare Quality Assessment and Control
- Endocrinology Research Center
- Artificial Intelligence Research Institute
- 期: 卷 31, 编号 4 (2024)
- 页面: 314-330
- 栏目: CLINICAL TRAIL PROTOCOLS
- URL: https://journals.rcsi.science/1728-0869/article/view/316999
- DOI: https://doi.org/10.17816/humeco635357
- ID: 316999
如何引用文章
全文:
详细
研究目的 。 本文介绍ARILIS(Analysis of Risks with Intelligent Laboratory Innovative System) 研究,旨在评估人工智能分析胸部CT数据的能力,以预测和预防癌症患者的非肿瘤相关死亡率。
材料与方法。 本研究为队列研究,将纳入2019至2023年期间在阿尔汉格尔斯克州确诊的恶性肿瘤患者。研究还计划将COVID-19肺炎患者、全身性疾病患者及“了解你的心脏”研究中的人群样本作为对照组。所有参与者的胸部CT数据将使用IRA LABS公司的多目标人工智能算法进行处理,以发现并量化心血管、肺部及骨骼系统病变的CT征象。从CT数据处理之日起,参与者将接受随访,追踪新发临床诊断及全因死亡情况。
预期结果。 确定癌症患者中心血管、肺部和骨骼系统病变的CT征象流行率,并与人群样本进行比较;评估癌症患者心血管、肺部和骨骼事件的发生率及全因死亡率,并与对照组进行比较;确定IRA LABS多目标人工智能算法在评估及重新分类癌症患者风险中的应用潜力;开发适用于实际医疗实践的多目标人工智能算法软件产品。
关键词
作者简介
Mikhail Yu. Valkov
Northern State Medical University; Arkhangelsk Regional Oncological Dispensary
编辑信件的主要联系方式.
Email: i@mvalkov.ru
ORCID iD: 0000-0003-3230-9638
SPIN 代码: 8608-8239
MD, Dr. Sci (Medicine), Professor
俄罗斯联邦, Arkhangelsk; ArkhangelskAndrej М. Grjibovski
Northern State Medical University; Northern (Arctic) Federal University n.a. M.V. Lomonosov; M.K. Ammosov North-Eastern Federal University
Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN 代码: 5118-0081
MD, MPhil, PhD
俄罗斯联邦, Arkhangelsk; Arkhangelsk; YakutskAlexander V. Kudryavtsev
Northern State Medical University
Email: ispha09@gmail.com
ORCID iD: 0000-0001-8902-8947
SPIN 代码: 9296-2930
PhD
俄罗斯联邦, ArkhangelskMaxim A. Bogdanov
Northern State Medical University
Email: chief-bma@ya.ru
ORCID iD: 0009-0002-3469-658X
俄罗斯联邦, Arkhangelsk
Dmitriy V. Bogdanov
Northern State Medical University; Arkhangelsk Regional Oncological Dispensary
Email: bogdanovdv@onko29.ru
ORCID iD: 0000-0002-4105-326X
SPIN 代码: 2507-1354
俄罗斯联邦, Arkhangelsk; Arkhangelsk
Andrey A. Dyachenko
Northern State Medical University
Email: andreydyachenko3@gmail.com
ORCID iD: 0000-0001-8421-5305
SPIN 代码: 5887-5750
MD, Cand. Sci. (Medicine)
俄罗斯联邦, ArkhangelskValeria Yu. Chernina
JSC “IRA Labs”
Email: chernina909@gmail.com
ORCID iD: 0000-0002-0302-293X
SPIN 代码: 8896-8051
俄罗斯联邦, Moscow
Mikhail G. Belyaev
JSC “IRA Labs”
Email: belyaevmichel@gmail.com
ORCID iD: 0000-0001-9906-6453
SPIN 代码: 2406-1772
Cand. Sci. (Physics and Mathematics), Professor
俄罗斯联邦, MoscowFarukh R. Yaushev
JSC “IRA Labs”; Moscow Institute of Physics and Technology
Email: yaushev@phystech.edu
ORCID iD: 0009-0006-1210-5311
俄罗斯联邦, Moscow; Dolgoprudny
Elena V. Panina
JSC “IRA Labs”
Email: panina@npcmr.ru
ORCID iD: 0009-0008-2981-2957
SPIN 代码: 7633-4770
俄罗斯联邦, Moscow
Maria A. Donskova
JSC “IRA Labs”
Email: m.donskova@ira-labs.com
ORCID iD: 0009-0001-5095-1723
SPIN 代码: 1892-3711
俄罗斯联邦, Moscow
Evgenia A. Soboleva
JSC “IRA Labs”
Email: info@ira-labs.com
ORCID iD: 0009-0009-4037-6911
俄罗斯联邦, Moscow
Maria V. Basova
JSC “IRA Labs”
Email: m.basova@ira-labs.com
ORCID iD: 0009-0000-3325-8452
俄罗斯联邦, Moscow
Maxim E. Pisov
JSC “IRA Labs”
Email: max@ira-labs.com
ORCID iD: 0000-0001-8727-5792
SPIN 代码: 7812-9031
俄罗斯联邦, Moscow
Maria N. Dugova
JSC “IRA Labs”
Email: dugovamaria@yandex.ru
ORCID iD: 0009-0004-5586-8015
俄罗斯联邦, Moscow
Ekaterina A. Petrash
JSC “IRA Labs”
Email: e.a.petrash@gmail.com
ORCID iD: 0000-0001-6572-5369
SPIN 代码: 6910-8890
俄罗斯联邦, Moscow
Regina R. Gareeva
JSC “IRA Labs”
Email: regina.gareeva@phystech.edu
ORCID iD: 0009-0007-5519-7268
俄罗斯联邦, Moscow
Alexey E. Shevtsov
JSC “IRA Labs”
Email: a.shevtsov@ira-labs.com
ORCID iD: 0000-0003-3085-4325
俄罗斯联邦, Moscow
Vilgelm V. Volman
JSC “IRA Labs”
Email: v.volman@ira-labs.com
ORCID iD: 0009-0000-6631-1256
俄罗斯联邦, Moscow
Zelimhan G.-M. Berikhanov
Sechenov First Moscow State Medical Univesity
Email: berikkhanov_z_g@staff.sechenov.ru
ORCID iD: 0000-0002-4335-3987
SPIN 代码: 5506-9748
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowSergey N. Avdeev
Sechenov First Moscow State Medical Univesity
Email: serg_avdeev@list.ru
ORCID iD: 0000-0002-5999-2150
SPIN 代码: 1645-5524
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowNatalya S. Serova
Sechenov First Moscow State Medical Univesity
Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0001-6697-7824
SPIN 代码: 4632-3235
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowMarina I. Sekacheva
Sechenov First Moscow State Medical Univesity
Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0003-0015-7094
SPIN 代码: 4801-3742
PhD, Associate Professor
俄罗斯联邦, MoscowYaroslav I. Ashikhmin
Center for Healthcare Quality Assessment and Control
Email: ashikhmin@rosmedex.ru
ORCID iD: 0000-0002-1243-5701
SPIN 代码: 3871-1099
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowZhanna E. Belaya
Endocrinology Research Center
Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441
SPIN 代码: 4746-7173
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowVitaly V. Omelyanovskiy
Center for Healthcare Quality Assessment and Control
Email: vvo@rosmedex.ru
ORCID iD: 0000-0003-1581-0703
SPIN 代码: 1776-4270
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowMikhail Yu. Goncharov
JSC “IRA Labs”; Artificial Intelligence Research Institute
Email: m.goncharov@ira-labs.com
ORCID iD: 0009-0009-8417-0878
SPIN 代码: 7877-3375
俄罗斯联邦, Moscow; Moscow
Aleksandr S. Gershtanskiy
Northern State Medical University
Email: zdrav@dvinaland.ru
ORCID iD: 0009-0000-9646-1511
俄罗斯联邦, Arkhangelsk
Victor A. Gombolevskiy
JSC “IRA Labs”; Sechenov First Moscow State Medical Univesity; Artificial Intelligence Research Institute
Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN 代码: 6810-3279
MD, Cand. Sci. (Medicine)
Moscow; Moscow; Moscow参考
- World Health Organization: The top 10 causes of death. Global web-site. [cited 2024 Febr 13]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- Wong MCS, Huang J, Chan PS, et al. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Network Open. 2021;4(7):e2118457. doi: 10.1001/jamanetworkopen.2021.18457
- Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383(7):640–649. doi: 10.1056/NEJMoa1916623
- Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010. doi: 10.1016/S0140-6736(14)62038-9
- Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003–2015: a pooled analysis of 17 population-based cancer registries. Lancet Global Health. 2018;6(5):e555–e567. doi: 10.1016/S2214-109X(18)30127-X
- Valkova LE, Merabishvili VM, Pankratyeva AYu, et al. Survival of cancer patients screened at the first stage of dispanserization of certain groups of the adult population: a population-based epidemiological analysis. Problems in Oncology. 2021;67(4): 501–510. EDN: LHCVAZ d oi: 10.37469/0507-3758-2021-67-4-501-510
- Zaorsky NG, Churilla TM., Egleston BL, et al. Causes of death among cancer patients. Ann Oncol. 2017;28(2):400–407. doi: 10.1093/annonc/mdw604
- Valkova LE, Levit ML, Merabishvili VM, et al. Cancer mortality trends after implementation of the national programme for dispensarization of certain groups of the adult population: a population-based study from Arkhangelsk, North-western Russia. Research'n Practical Medicine Journal. 2020;7(4):175–182. EDN: UWZJGX doi: 10.17709/2409-2231-2020-7-4-14
- Cao B, Soerjomataram I, Bray F. The burden and prevention of premature deaths from noncommunicable diseases, including cancer: a global perspective. In: Wild C.P., Weiderpass E., Stewart B.W., eds. World Cancer Report. Cancer research for cancer prevention. Lion; 2020.
- Authors/Task Force Members, Piepoli MF, Hoes AW, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23(11):NP1–NP96. doi: 10.1177/2047487316653709
- Sedlak T, Herscovici R, Cook-Wiens G, et al. Predicted versus observed major adverse cardiac event risk in women with evidence of ischemia and no obstructive coronary artery disease: a report from WISE (Women's Ischemia Syndrome Evaluation). J Am Heart Assoc. 2020;9(7):e013234. d oi: 10.1161/JAHA.119.013234
- Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med. 2022;12(7):1180. doi: 10.3390/jpm12071180
- Safaryan AS, Vygodin VA, Nebieridze DV, Nikonova KV. Comparability of cardiovascular risk assessment according to the SCORE and the coronary artery calcium score (Agatston score). Cardiovascular Therapy and Prevention. 2023;22(9):3650. EDN: EWWUXT doi: 10.15829/1728-8800-2023-3650
- Experiment on the use of innovative technologies in computer vision for the analysis of medical images and further application in the healthcare system. [cited 2024 May 18]. Available from: https://mosmed.ai
- Chernina VYu, Belyaev MG, Silin AYu, et al. Analysis of the diagnostic and economic impact of the combined artificial intelligence algorithm for analysis of 10 pathological findings on chest computed tomography. Digital Diagnostics. 2023;4(2):105−132. EDN: UGUJWJ d oi: https://doi.org/10.17816/DD321963
- Morozov SP, Protsenko DN, Smetanina SV, et al. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: preprint no. CDT-2020-I. In: The best practices of radiation and instrumental diagnostics. Issue 65. Moscow: GBUZ "NPCC DiT DZM"; 2020. (In Russ.)
- Lynch DA, Austin JH, Hogg JC, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology. 2015;277(1):192–205. d oi: 10.1148/radiol.2015141579
- Hersh CP, Washko GR, Estépar RS, et al. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res. 2013;14(1):42. d oi: 10.1186/1465-9921-14-42
- Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–2926. doi: 10.1093/eurheartj/ehu281
- Wanhainen A, Verzini, Van Herzeele I, et al. Editor's Choice — European Society for Vascular Surgery (ESVS) 2019 Clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vascul Endovascul Surg. 2019;57(1):8–93. doi: 10.1016/j.ejvs.2018.09.020
- Jurgens PT, Carr JJ, Terry JG, et al. Association of abdominal aorta calcium and coronary artery calcium with incident cardiovascular and coronary heart disease events in black and white middle-aged people: The coronary artery risk development in young adults’ study. J Am Heart Assoc. 2021;10(24):e023037. doi: 10.1161/JAHA.121.023037
- Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS): Endorsed by: Association for European paediatric and congenital cardiology (AEPC), International society for heart and lung transplantation (ISHLT). Eur Respir J. 2015;46(4):903–975. doi: 10.1183/13993003.01032-2015
- Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:(4):827–832. d oi: 10.1016/0735-1097(90)90282-t
- Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. EDN: TUONYE doi: 10.14341/osteo12930
- Genant HK, Jergas M. Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporosis Int. 2003;14 Suppl 3:S43–S55. doi: 10.1007/S00198-002-1348-1
- Spearman JV, Renker M, Schoepf UJ, et al. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur Radiol. 2015;25(11):3372–3381. doi: 10.1007/s00330-015-3765-5
- Cook S, Malyutina S, Kudryavtsev AV, et al. Know your heart: rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35-69 years from two Russian cities. Wellcome Open Res. 2018;3:67. doi: 10.12688/wellcomeopenres.14619.3
- Mirolyubova O, Kholmatova K, Postoeva A, et al. Socio-demographic, lifestyle, and cardiometabolic characteristics associated with low-grade systemic inflammation in Russian adult population. Biomolecules. 2023;13(5):835. d oi: 10.3390/biom13050835
- Drapkina OM, Shalnova SA, Imaeva AE, et al. Epidemiology of cardiovascular diseases in regions of Russian Federation. Third survey (ESSE-RF-3). Rationale and study design. Cardiovascular Therapy and Prevention. 2022;21(5):48–57. d oi: 10.15829/1728-8800-2022-3246
- McClelland RL, Jorgensen NW, Budoff M, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–1653. d oi: 10.1016/j.jacc.2015.08.035
- Diagnostics and Telemedicine Center [Internet]. AIRA Labs LLC Chest-IRA. [cited 2024 Apr 17]. Available from: h ttps://mosmed.ai/service_catalog/chestira
- Morozov SP, Vladzimirskiy AV, Klyashtornyi VG, et al. Clinical trials of software based on intelligent technologies (radiation diagnostics): preprint No. CDT-2019-1. In: The best practices of radiation and instrumental diagnostics. Issue 23. Moscow: GBUZ "NPCC DiT DZM"; 2019. (In Russ.)
- Vladzimirskiy AV, Vasiliev YuA, Arzamasov КМ, et al. Computer vision in radiation diagnostics: the first stage of the Moscow experiment. Moscow: Izdatel'skie resheniya; 2023. (In Russ.) EDN: FOYLXK
- Ansah JP, Chiu CT. Projecting the chronic disease burden among the adult population in the United States using a multi-state population model. Front Public Health. 2023;10:1082183. doi: 10.3389/fpubh.2022.1082183
- Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–1114. d oi: 10.1161/CIRCULATIONAHA.115.020406
补充文件
