基于庞索4R的商业食品色素在人全血培养微核试验中的遗传毒性效应

封面

如何引用文章

全文:

详细

论证。传统上,食品添加剂的遗传安全性评估仅使用高纯度物质进行。在俄罗斯联邦,根据关税同盟技术法规的规定,现行制度并未规定对获准使用的食品色素进行遗传毒性控制。相关法规仅规定主要着色成分及部分组分的含量要求。然而,这种方法存在局限性,因其忽视了食品色素中可能存在的有毒或具有遗传毒性的杂质。

目的。采用在人全血中进行的、结合细胞有丝分裂阻断条件的微核试验,在有/无代谢激活系统的条件下,评估零售渠道获得的基于庞索4R(E124)的食品色素的遗传安全性。

材料与方法。所用基于庞索4R的食品色素购自零售渠道。在细胞有丝分裂阻断条件下,将健康供体的细胞分别在有或无大鼠肝脏S9代谢激活系统的情况下进行培养,并在0–2 mg/mL的浓度范围内暴露于该食品色素。细胞学分析依据扩展微核试验方案进行。统计处理采用χ2检验与Mann–Whitney U检验。

结果。在血液培养中观察到带有遗传损伤的细胞频率呈“U”型依赖关系显著上升:在无代谢激活条件下,于0.0000256、0.00064和0.4 mg/mL浓度下出现显著增加;在代谢激活条件下,于0.0000256、0.000128和0.016 mg/mL浓度下出现显著增加。此外,在S9存在条件下还观察到三核细胞频率升高、有丝分裂活性增强以及细胞凋亡的抑制作用。

结论。零售渠道获得的庞索4R食品色素在接近或低于人类每日允许摄入量的水平下已表现出遗传毒性效应。所采用的方法可作为建立食品色素及添加剂遗传安全性评价体系的基础。

作者简介

Tatyana A. Nikitina

Centre for Strategic Planning and Management of Biomedical Health Risks

编辑信件的主要联系方式.
Email: TNikitina@cspmz.ru
ORCID iD: 0000-0003-0866-5990
SPIN 代码: 9106-5076
俄罗斯联邦, Moscow

Maria A. Konyashkina

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: MKonyashkina@cspfmba.ru
ORCID iD: 0000-0002-8319-1329
SPIN 代码: 7559-9045
Scopus 作者 ID: 8142882800

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Faina I. Ingel

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: FIngel@cspmz.ru
ORCID iD: 0000-0002-2262-6800
SPIN 代码: 1013-7006
Scopus 作者 ID: 57205760994
Researcher ID: C-8899-2014

Dr. Sci. (Biology)

俄罗斯联邦, Moscow

Lyudmila V. Akhaltseva

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: LAhalceva@cspmz.ru
ORCID iD: 0000-0002-3619-3858
SPIN 代码: 7049-0003
Scopus 作者 ID: 57138478700
Researcher ID: I-8204-2018

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

参考

  1. FDA. Food and drug administration compliance program guidance manual. Chapter 03 —Foodborne biological hazards. USA: FDA; 2008. Available from: https://www.fda.gov/media/71245/download
  2. Agarwai K, Mukherjee A, Sharma A. In vivo cytogenetic studies on male mice exposed to Ponceau 4R and beta-carotene. Cytobios. 1993;74(296):23–28.
  3. Bateman B. The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Archives of Disease in Childhood. 2004;89(6):506–511. doi: 10.1136/adc.2003.031435
  4. McCann D, Barrett A, Cooper A, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The Lancet. 2007;370(9598):1560–1567. doi: 10.1016/S0140-6736(07)61306-3
  5. EFSA Panel on Food Additives or Nutrient Soarces Added to Food. Scientific Opinion on the re-evaluation of Ponceau 4R (E 124) as a food additive. EFSA Journal. 2009;7(11):1328. doi: 10.2903/j.efsa.2009.1328
  6. Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2011;721(1):27–73. doi: 10.1016/j.mrgentox.2010.12.015 EDN: OKOVFF
  7. Yurchenko VV, Ingel FI, Akhaltseva LV, et al. Genotoxic safety of synthetic food colours. Review. Ecological genetics. 2021;19(4):323–341. doi: 10.17816/ecogen79399 EDN: MUULZS
  8. Ishidate M, Sofuni T, Yoshikawa K, et al. Primary mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology. 1984;22(8):623–636. doi: 10.1016/0278-6915(84)90271-0
  9. Izbirak A, Sumer S, Diril N. Mutagenicity testing of some azo dyes used as food additives. Microbiyol Bul. 1990;24(1):48–56.
  10. Hayashi M, Matsui M, Ishii K, Kawasaki M. Data sheet for mutagenicity evaluation of food additives by Ministry of Health Labour and Welfare (FY1979-FY1998). Environ Mutagen Res. 2000;22:27–44.
  11. Haveiand-Smith RB. An evaiuation on the genetic effects of some food coiours using microbia test systems. Ph D. Thesis. London: CNAA; 1980.
  12. Yamjala K, Subramania Nainar M, Varma SK, Ambore N. Separation, identification and mutagenic assessment of the photodegradation products of Ponceau 4R (E124) in a beverage. Analytical Methods. 2016;8(25):5017–5024. doi: 10.1039/C6AY00716C
  13. Cameron TP, Hughes TJ, Kirby PE, et al. Mutagenic activity of 27 dyes and related chemicals in the Salmonella/microsome and mouse lymphoma TK+/− assays. Mutation Research/Genetic Toxicology. 1987;189(3):223–261. doi: 10.1016/0165-1218(87)90056-5
  14. Luck H, Rickerl E. Lebensmittelzusatzstoffe und mutagene Wirkung.VI.Pruefung der in Westdeutschland zugelassenen und urapruenglich vorgeachlagenen Lebensmittelfarbatoffe auf mutagene Wirkung an Escherichia coli. Z Lebens- mittel-Untersuch-Forsch. 1960;112:157–174. (In German)
  15. Sankaranarayanan N, Murthy MSS. Testing of some permitted food colours for the induction of gene conversion in diploid yeast. Mutation Research/Genetic Toxicology. 1979;67(4):309–314. doi: 10.1016/0165-1218(79)90026-0
  16. Gubbini L, Cardamone J, Voiterra-Veca L, et al. Controiio deii’ effetto mutageno di aicuni coioranti chimici ambientaii. Atti Ass. Genet Ital. 1975;20:43–44.
  17. Vaidya VG, Godbole NM. Mutagenicity stady of four colours using human leucocyte and mouse micronucleus test systems. Indian Journal of Experimental Biology. 1978;16(7):820–821.
  18. Yurchenko VV, Akhaltseva LV, Yurtseva NA, et al. Evaluation of mutagenic activity of the food dye Ponceau 4R in a micronuclear test in mice. Hygiene and sanitation. 2023;102(11):1210–1214. doi: 10.47470/0016-9900-2023-102-11-1210-1214 EDN: RIWBWA
  19. Durnev AD, Oreshchenko AV, Kulakova AV, Beresten NF. Analysis of cytogenetic activity of food dyes. Voprosy medicinskoj himii. 1995;41(5):50–53. EDN: UZFCRZ
  20. Bastaki M, Farrell T, Bhusari S, et al. Lack of genotoxicity in vivo for food color additive Tartrazine. Food and Chemical Toxicology. 2017;105:278–284. doi: 10.1016/j.fct.2017.04.034
  21. Sasaki YF, Kawaguchi S, Kamaya A, et al. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2002;519(1-2):103–119. doi: 10.1016/s1383-5718(02)00128-6 EDN: AYFGGD
  22. Tsuda S. DNA Damage induced by red food dyes orally administered to pregnant and male mice. Toxicological Sciences. 2001;61(1):92–99. doi: 10.1093/toxsci/61.1.92 EDN: IWNCVD
  23. Yamada M, Honma M. Summarized data of genotoxicity tests for designated food additives in Japan. Genes and Environment. 2018;40(1):1–25. doi: 10.1186/s41021-018-0115-2 EDN: NMRVHY
  24. Shimada C, Kano K, Sasaki YF, et al. Differential colon DNA damage induced by azo food additives between rats and mice. The Journal of Toxicological Sciences. 2010;35(4):547–554. doi: 10.2131/jts.35.547
  25. Ingel FI. Part 2. Environmental factors and individual features in system of evaluation of human genome instability. additional capability of the test the technique for cytogenetic analysis. Ecological genetics. 2006;4(4):38–54. doi: 10.17816/ecogen4438-54 EDN: HZNVET
  26. Ingel FI, Yurchenko VV, Guskov AS, et al proliferative activity parameters and their correlation with genetic damage of blood lymphocytes duringultivation under the conditions of cytokinetic block. Annals of The Russian Academy of Medical Sciences. 2006(4):41–45. EDN: HSYNGB
  27. Swaroop VR, Roy DD, Vijayakumar T. Genotoxicity of synthetic food colorants. Journal of Food Science and Engineering. 2011;1:53–59.
  28. OECD. Test No. 487: In Vitro mammalian cell micronucleus test. OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD; 2023. doi: 10.1787/9789264264861-en
  29. Yeropkin MYh, Yeropkina EM. Model of biotransfor mation of xenobiotics In vitro: effect of liver fraction S9 on toxicity of some an liviral preparations. Toxicological Review. 2008;(5):35–39. EDN: JVOOMT
  30. Ingel FI, Erdinger L, Eckl P, et al. Genomic instability, radiosensitivity and adaptive response of blood lymphocytes from children living in the aral sea region: correlation with emotional stress and blood contamination. Central European Journal of Occupational and Environmental Medicine. 2010;16(1-2):31–45. EDN: WTJSLP
  31. Ingel F, Krivtsova E, Urtseva N, et al. Volatility and sensitivity of the genome of healthy children in Magnitogorsk. Hygiene and Sanitation, Russian Journal. 2013;92(3):20–27. EDN: QIQPXV
  32. Nikitina TA, Konyashkina MA, Ingel FI, Akhaltseva LV. Evaluation of the genotoxic effect of tartrazine using a metabolic activation system in human lymphocyte culture under cytokinetic block conditions. Ecological Genetics. 2023;21(1):41–51. doi: 10.17816/ecogen117502 EDN: VADCQS
  33. Rastogi RP, Richa, Sinha RP. Apoptosis: molecular mechanisms and pathogenicity. EXCLI Journal. 2010;8:155–181. doi: 10.17877/DE290R-8930
  34. Veres IA. Apoptosis-dependent mechanisms of inflammation. Medical Journal. 2017;(3):147–152. EDN: ZEGMCP
  35. Lugovaya AV, Kalinina NM, Mitreikin VP, et al. Apoptosis and proliferation ofperipheral blood T-cells as alternative processes in pathogenesis of diabetes mellitus type 1. Medical alphabet. 2019;1(4):16–20. doi: 10.33667/2078-5631-2019-1-4(379)-16-20 EDN: PVXRKE
  36. Microbiological and molecular genetic assessment of food products obtained using genetically modified microorganisms: guidelines. Moscow: Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of Russia; 2004. (In Russ.) Available from: https://meganorm.ru/Data2/1/4293855/4293855349.pdf

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Control cultures: spectrum of cells that completed varying numbers of division cycles in the presence of cytochalasin B. S9, metabolic activation system.

下载 (68KB)
3. Fig. 2. Effect of food coloring on cell proliferation: a – effect of Ponceau 4R only; b – effect of Ponceau 4R under conditions of metabolic activation.

下载 (183KB)
4. Fig. 3. Pairwise comparison of cell population spectra in human blood cultures after exposure to the food colorant with and without metabolic activation: red star, statistically significant differences in the frequency of trinucleated cells within the spectrum of cell populations under different cultivation conditions; arrows, statistically significant differences in the frequency of cells that completed the same number of division cycles under different cultivation conditions (the direction indicates the vector of change, and the color corresponds to the cell fraction for which the difference is statistically significant). S9, metabolic activation system.

下载 (369KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».