地磁场变化与人体心律参数之间的同步效应:植物神经系统的潜在作用
- 作者: Zenchenko T.A.1,2, Poskotinova L.V.3, Khorseva N.I.4, Breus T.K.2
-
隶属关系:
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
- Space Research Institute of Russian Academy of Sciences
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
- Institute of Biochemical Physics of the Russian Academy of Sciences
- 期: 卷 31, 编号 10 (2024)
- 页面: 750-767
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314552
- DOI: https://doi.org/10.17816/humeco643117
- EDN: https://elibrary.ru/VLAXWX
- ID: 314552
如何引用文章
详细
背景。地磁场变化是一种重要的生态因素,对人体健康和功能状态,尤其是心血管系统具有显著影响。然而,其生物物理作用机制以及在不同时间和空间尺度上的现象表现尚不明确。本文延续了我们此前关于人体静息状态下心律波动与毫赫兹频段地磁场变化(周期为3–40分钟)之间同步现象(即“生物-地磁同步效应”)的研究。
目的。评估植物神经系统作为人体对地磁场变化反应中介环节的可能作用。
材料与方法。2012年至2024年期间,共进行了673次静息状态下的心率间期图记录实验。第一组为8名基本健康志愿者,每人进行多次记录(每次100–120分钟);第二组为39人,仅记录一次(时长60分钟)。比较两组受试者逐分钟的心率与心率变异性时间序列中生物-地磁同步效应的发生频率。分析方法包括交叉相关分析与小波分析。
结果。在全部实验样本中,采用相关分析法,心率参数与地磁场矢量分量的同步出现率为32%,而心率变异性指标的同步率为9–17%,差异达两倍以上。根据小波谱相似性标准,心率同步效应的发生率为40%,心率变异性参数为24–28%。第一组每位志愿者及第二组整体的结果分布基本一致。
结论。在个体多次观测结果与志愿者群体分析中均可见,与心率变异性参数相比,心率指标的动态变化更频繁且在统计学上显著地(p < 0.001)呈现出生物-地磁同步效应。
作者简介
Tatiana A. Zenchenko
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Space Research Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: zench@mail.ru
ORCID iD: 0000-0002-0520-2029
SPIN 代码: 8974-6685
Dr. Sci. (Biology), Cand. Sci. (Physics and Mathematics)
俄罗斯联邦, 3 Institutskaya st, Pushchino, Moscow region, 142290; MoscowLiliya V. Poskotinova
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Email: liliya200572@mail.ru
ORCID iD: 0000-0002-7537-0837
SPIN 代码: 3148-6180
Dr. Sci. (Biology) MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, ArkhangelskNataliya I. Khorseva
Institute of Biochemical Physics of the Russian Academy of Sciences
Email: sheridan1957@mail.ru
ORCID iD: 0000-0002-3444-0050
Cand. Sci. (Biology)
俄罗斯联邦, MoscowTamara K. Breus
Space Research Institute of Russian Academy of Sciences
Email: breus36@mail.ru
ORCID iD: 0000-0003-4057-0844
SPIN 代码: 1267-8561
Dr. Sci. (Physics and Mathematics)
俄罗斯联邦, Moscow参考
- Cornélissen G, Halberg F, Breus T, et al. Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol Terr Phys. 2002;64(s 5–6):707–720. doi: 10.1016/S1364-6826(02)00032-9
- Ozheredov VA, Breus TK, Gurfinkel YI, et al. Influence of some weather factors and geomagnetic activity on the development of severe cardiological pathologies. Biophysics. 2010;55(1):110–119. EDN: MVILUR
- Mavromichalaki H, Papailiou M, Dimitrova S, et al. Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat Hazards. 2012;64:1447–1459. doi
- Vaičiulis V, Venclovienė J, Tamošiūnas A, et al. Associations between space weather events and the incidence of acute myocardial infarction and deaths from ischemic heart disease. Atmosphere. 2021;12(3):306. doi: 10.3390/atmos12030306
- Podolská K. Changes of circulatory and nervous diseases mortality patterns during periods of exceptional solar events. Atmosphere. 2021;12(2):203. doi: 10.3390/atmos12020203
- Rapoport SI, Bolshakova TD, Malinovskaya NK, et al. The magnetic storm as a stress factor. Biofizika. 1998;43(4):638–639. EDN: MPAGOR
- Khorseva NI. Possibility of using the psychophysiogical indices for the evaluation of the influence of cosmophysical factors (review). Geophysical Processes and Biosphere. 2013;12(2):34–56. EDN: RAGHTZ
- Gurfinkel YI, Ozheredov VA, Breus TK, Sasonko ML. The effects of space and terrestrial weather factors on arterial stiffness and endothelial function in humans. Biophysics. 2018;63(2):299–306. EDN: YRYXAH
- Dimitrova S, Stoilova I, Cholakov I. Influence of local geomagnetic storms on arterial blood pressure. Bioelectromagnetics. 2004;25(6):408–414. doi: 10.1002/bem.20009
- Ozheredov VA, Chibisov SM, Blagonravov ML, et al. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population. Int J Biometeorol. 2017;61(5):921–929. doi: 10.1007/s00484-016-1272-2
- Zenchenko TA, Poskotinova LV, Rekhtina AG, Zaslavskaya RM. Relation between microcirculation parameters and Pc3 geomagnetic pulsations. Biophysics. 2010;55(4):646–651. doi: 10.1134/S000635091004024X EDN: NYMXXT
- Otsuka K, Yamanaka T, Cornelissen G, et al. Altered chronome of heart rate variability during span of high magnetic activity. Scripta medica (Brno). 2000;73(2):111–116.
- Otsuka K, Cornélissen G, Weydahl A, et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother. 2001;55(Suppl 1):51s–56s. doi: 10.1016/s0753-3322(01)90005-8
- Alabdulgade A, Maccraty R, Atkinson M, et al. Human heart rhythm sensitivity to earth local magnetic field fluctuations. J. Vibroeng. 2015;17(6):3271–3278.
- Vasin AL, Shafirkin AV, Gurfinkel YuI. Effect of artificial alternating geomagnetic field in the millihertz range on the heart rate variability indices. Aerospace and Environmental Medicine. 2019;53(6):62–69. doi: 10.21687/0233-528X-2019-53-6-62-69 EDN: RVCQVD
- Gmitrov J, Ohkubo C. Geomagnetic field decreases cardiovascular variability. Electro Magnetobiol. 1999;18:291–303. doi: 10.3109/15368379909022585
- Lednev VV, Belova NA, Ermakov AM, et al. Modulation of cardiac rhythm in the humans exposed to extremely weak alternating magnetic fields. Biophysics. 2008;53(6):648–654. doi: 10.1134/S0006350908060328 EDN: LLKJWB
- Pobachenko SV, Kolesnik AG, Borodin AS, Kalyuzhin VV. The contingency of parameters of human encephalograms and Schumann resonance electromagnetic fields revealed in monitoring studies. Biophysics. 2006;51(3):480–483. doi: 10.1134/S0006350906030225 EDN: LJPAJZ
- Timofejeva I, McCraty R, Atkinson M, et al. Identification of a group’s physiological synchronization with earth’s magnetic field. Int J Environ Res Public Health. 2017;14(9):998. doi: 10.3390/ijerph14090998
- Maksimov AL, Volkov AI, Savintseva AA, et al. About resonance interaction of Schumann’s biospherical frequencies and human brain rhythms. In: Abstracts of the VI International Congress "Weak and ultra-weak fields and radiations in biology and medicine". St. Petersburg; 2012. P. 168. (In Russ.) URL: www.biophys.ru/archive/congress2012/proc-p168.pdf
- Caswell JM, Singh M, Persinger MA. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: experimental verification of correlation studies. Life Sci Space Res. 2016;10:47–52. doi: 10.1016/j.lssr.2016.08.001
- Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann resonance band. Sci Rep. 2019;9(1):1645. doi: 10.1038/s41598-018-36341-z
- Gurfinkel YuI, Vasin AL, Pishchalnikov RYu, et al. Geomagnetic storm under laboratory conditions: randomized experiment. Int J Biometeorol. 2018;62(4):501–512. doi: 10.1007/s00484-017-1460-8
- Zenchenko TA, Medvedeva AA, Khorseva NI, Breus TK. Synchronization of human heart-rate indicators and geomagnetic field variations in the frequency range of 0.5–3.0 mHz. Izv. Atmos. Ocean. Phys. 2014;50:736–744. doi: 10.1134/S0001433814040094
- Zenchenko TA, Khorseva NI, Breus TK. Long-term study of the synchronization effect between geomagnetic field variations and minute-scale heart-rate oscillations in healthy people. Atmosphere, 2024;15(1):134. doi: 10.3390/atmos15010134
- Zenchenko TA, Jordanova M, Poskotinova LV, et al. Synchronization between human heart rate dynamics and Pc5 geomagnetic pulsations at different latitudes. Biophysics, 2014;59:965–972. doi: 10.1134/S0006350914060256
- Poskotinova L, Krivonogova E, Demin D, Zenchenko T. Differences in the sensitivity of the baroreflex of heart rate regulation to local geomagnetic field variations in normotensive and hypertensive humans. Life, 2022;12(7):1102. doi: 10.3390/life12071102
- Lukyanova SN. Neuroeffects of microwave EMF of non-thermal intensity and short exposure. Radiation biology. Radioecology. 2024;64(3):244–256. doi: 10.31857/S0869803124030026 EDN: MBQOJM
- Davis GE Jr, Lowell WE. Chaotic solar cycles modulate the incidence and severity of mental illness. Med. Hypotheses, 2004;62(2):207-214. doi: 10.1016/j.mehy.2003.11.006
- Baevsky RM, Ivanov GG, Chireikin LV, et al. Analysis of heart rate variability using various electrographic systems (methodological recommendations). Journal of Arrhythmology. 2002;(24):65–87. (In Russ.) EDN: HSPLXF
- Poskotinova LV, Krivonogova EV, Zenchenko TA, Demin DB. Features of synchronization of heart rate variability and local variations of the geomagnetic field component's in individuals with different blood pressure levels. In: Collection of scientific papers of the VI Congress of Biophysicists of Russia. Sochi; 2019. P. 364. (In Russ.) EDN: FOKRDR
- Zenchenko TA, Khorseva NI, Stankevich AA. The effect of synchronizing the human heart rhythm with geomagnetic field variations: are there distinguished frequencies? Biofizika. 2024;69(4):915–926. doi: 10.31857/S0006302924040221 EDN: NEXGFJ
- Poskotinova LV, Demin DB, Krivonogova EV, et al. Neurophysiological mechanisms of adaptation of Arctic residents with socially significant neurological and cardiovascular disorders and methods for correcting maladaptive disorders. FGBUN FITSKIA Ural Branch of the Russian Academy of Sciences. No 122011900077-8. Research report. 2021. EDN: ZCSLCD
- Sonkodi B. LF power of HRV could be the Piezo2 activity level in baroreceptors with some Piezo1 residual activity contribution. Int J Mol Sci. 2023;24(8):7038. doi: 10.3390/ijms24087038
- Zhou Z, Martinac B. Mechanisms of PIEZO channel inactivation. Int J Mol Sci. 2023;24(18):14113. doi: 10.3390/ijms241814113
- Mamberger KK, Makedonsky DF, Rudenko MYu, Rudenko SM. Functional interconnection between sinoatrial node of right atrium and low-pressure baroreceptors in aorta. Izvestiya sfedu. Engineering sciences. 2009;(7):23–29 EDN: KVBCKP
- Li K, Shi Y, Gonye EC, Bayliss DA. TRPM4 contributes to subthreshold membrane potential oscillations in multiple mouse pacemaker neurons. eNeuro. 2021;8(6):ENEURO.0212-21.2021. doi: 10.1523/ENEURO.0212-21.2021
- Hu Y, Cang J, Hiraishi K, et al. The Role of TRPM4 in cardiac electrophysiology and arrhythmogenesis. Int J Mol Sci. 2023;24(14):11798. doi: 10.3390/ijms241411798
- Martinez-Banaclocha M. Ephaptic coupling of cortical neurons: possible contribution of astroglial magnetic fields? Neuroscience. 2018;370:37–45. doi: 10.1016/j.neuroscience.2017.07.072
- Suenson M. Ephaptic impulse transmission between ventricular myocardial cells in vitro. Acta Physiol Scand. 1984;120(3):445–455. doi: 10.1111/j.1748-1716.1984.tb07405.x
- Adams WP, Raisch TB, Zhao Y, et al. Extracellular perinexal separation is a principal determinant of cardiac conduction. Circ Res. 2023;133(8):658–673. doi: 10.1161/CIRCRESAHA.123.322567
补充文件
