地磁场变化与人体心律参数之间的同步效应:植物神经系统的潜在作用

封面

如何引用文章

详细

背景。地磁场变化是一种重要的生态因素,对人体健康和功能状态,尤其是心血管系统具有显著影响。然而,其生物物理作用机制以及在不同时间和空间尺度上的现象表现尚不明确。本文延续了我们此前关于人体静息状态下心律波动与毫赫兹频段地磁场变化(周期为3–40分钟)之间同步现象(即“生物-地磁同步效应”)的研究。

目的。评估植物神经系统作为人体对地磁场变化反应中介环节的可能作用。

材料与方法。2012年至2024年期间,共进行了673次静息状态下的心率间期图记录实验。第一组为8名基本健康志愿者,每人进行多次记录(每次100–120分钟);第二组为39人,仅记录一次(时长60分钟)。比较两组受试者逐分钟的心率与心率变异性时间序列中生物-地磁同步效应的发生频率。分析方法包括交叉相关分析与小波分析。

结果。在全部实验样本中,采用相关分析法,心率参数与地磁场矢量分量的同步出现率为32%,而心率变异性指标的同步率为9–17%,差异达两倍以上。根据小波谱相似性标准,心率同步效应的发生率为40%,心率变异性参数为24–28%。第一组每位志愿者及第二组整体的结果分布基本一致。

结论。在个体多次观测结果与志愿者群体分析中均可见,与心率变异性参数相比,心率指标的动态变化更频繁且在统计学上显著地(p < 0.001)呈现出生物-地磁同步效应。

作者简介

Tatiana A. Zenchenko

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Space Research Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zench@mail.ru
ORCID iD: 0000-0002-0520-2029
SPIN 代码: 8974-6685

Dr. Sci. (Biology), Cand. Sci. (Physics and Mathematics)

俄罗斯联邦, 3 Institutskaya st, Pushchino, Moscow region, 142290; Moscow

Liliya V. Poskotinova

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: liliya200572@mail.ru
ORCID iD: 0000-0002-7537-0837
SPIN 代码: 3148-6180

Dr. Sci. (Biology) MD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Arkhangelsk

Nataliya I. Khorseva

Institute of Biochemical Physics of the Russian Academy of Sciences

Email: sheridan1957@mail.ru
ORCID iD: 0000-0002-3444-0050

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Tamara K. Breus

Space Research Institute of Russian Academy of Sciences

Email: breus36@mail.ru
ORCID iD: 0000-0003-4057-0844
SPIN 代码: 1267-8561

Dr. Sci. (Physics and Mathematics)

俄罗斯联邦, Moscow

参考

  1. Cornélissen G, Halberg F, Breus T, et al. Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol Terr Phys. 2002;64(s 5–6):707–720. doi: 10.1016/S1364-6826(02)00032-9
  2. Ozheredov VA, Breus TK, Gurfinkel YI, et al. Influence of some weather factors and geomagnetic activity on the development of severe cardiological pathologies. Biophysics. 2010;55(1):110–119. EDN: MVILUR
  3. Mavromichalaki H, Papailiou M, Dimitrova S, et al. Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat Hazards. 2012;64:1447–1459. doi
  4. Vaičiulis V, Venclovienė J, Tamošiūnas A, et al. Associations between space weather events and the incidence of acute myocardial infarction and deaths from ischemic heart disease. Atmosphere. 2021;12(3):306. doi: 10.3390/atmos12030306
  5. Podolská K. Changes of circulatory and nervous diseases mortality patterns during periods of exceptional solar events. Atmosphere. 2021;12(2):203. doi: 10.3390/atmos12020203
  6. Rapoport SI, Bolshakova TD, Malinovskaya NK, et al. The magnetic storm as a stress factor. Biofizika. 1998;43(4):638–639. EDN: MPAGOR
  7. Khorseva NI. Possibility of using the psychophysiogical indices for the evaluation of the influence of cosmophysical factors (review). Geophysical Processes and Biosphere. 2013;12(2):34–56. EDN: RAGHTZ
  8. Gurfinkel YI, Ozheredov VA, Breus TK, Sasonko ML. The effects of space and terrestrial weather factors on arterial stiffness and endothelial function in humans. Biophysics. 2018;63(2):299–306. EDN: YRYXAH
  9. Dimitrova S, Stoilova I, Cholakov I. Influence of local geomagnetic storms on arterial blood pressure. Bioelectromagnetics. 2004;25(6):408–414. doi: 10.1002/bem.20009
  10. Ozheredov VA, Chibisov SM, Blagonravov ML, et al. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population. Int J Biometeorol. 2017;61(5):921–929. doi: 10.1007/s00484-016-1272-2
  11. Zenchenko TA, Poskotinova LV, Rekhtina AG, Zaslavskaya RM. Relation between microcirculation parameters and Pc3 geomagnetic pulsations. Biophysics. 2010;55(4):646–651. doi: 10.1134/S000635091004024X EDN: NYMXXT
  12. Otsuka K, Yamanaka T, Cornelissen G, et al. Altered chronome of heart rate variability during span of high magnetic activity. Scripta medica (Brno). 2000;73(2):111–116.
  13. Otsuka K, Cornélissen G, Weydahl A, et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother. 2001;55(Suppl 1):51s–56s. doi: 10.1016/s0753-3322(01)90005-8
  14. Alabdulgade A, Maccraty R, Atkinson M, et al. Human heart rhythm sensitivity to earth local magnetic field fluctuations. J. Vibroeng. 2015;17(6):3271–3278.
  15. Vasin AL, Shafirkin AV, Gurfinkel YuI. Effect of artificial alternating geomagnetic field in the millihertz range on the heart rate variability indices. Aerospace and Environmental Medicine. 2019;53(6):62–69. doi: 10.21687/0233-528X-2019-53-6-62-69 EDN: RVCQVD
  16. Gmitrov J, Ohkubo C. Geomagnetic field decreases cardiovascular variability. Electro Magnetobiol. 1999;18:291–303. doi: 10.3109/15368379909022585
  17. Lednev VV, Belova NA, Ermakov AM, et al. Modulation of cardiac rhythm in the humans exposed to extremely weak alternating magnetic fields. Biophysics. 2008;53(6):648–654. doi: 10.1134/S0006350908060328 EDN: LLKJWB
  18. Pobachenko SV, Kolesnik AG, Borodin AS, Kalyuzhin VV. The contingency of parameters of human encephalograms and Schumann resonance electromagnetic fields revealed in monitoring studies. Biophysics. 2006;51(3):480–483. doi: 10.1134/S0006350906030225 EDN: LJPAJZ
  19. Timofejeva I, McCraty R, Atkinson M, et al. Identification of a group’s physiological synchronization with earth’s magnetic field. Int J Environ Res Public Health. 2017;14(9):998. doi: 10.3390/ijerph14090998
  20. Maksimov AL, Volkov AI, Savintseva AA, et al. About resonance interaction of Schumann’s biospherical frequencies and human brain rhythms. In: Abstracts of the VI International Congress "Weak and ultra-weak fields and radiations in biology and medicine". St. Petersburg; 2012. P. 168. (In Russ.) URL: www.biophys.ru/archive/congress2012/proc-p168.pdf
  21. Caswell JM, Singh M, Persinger MA. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: experimental verification of correlation studies. Life Sci Space Res. 2016;10:47–52. doi: 10.1016/j.lssr.2016.08.001
  22. Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann resonance band. Sci Rep. 2019;9(1):1645. doi: 10.1038/s41598-018-36341-z
  23. Gurfinkel YuI, Vasin AL, Pishchalnikov RYu, et al. Geomagnetic storm under laboratory conditions: randomized experiment. Int J Biometeorol. 2018;62(4):501–512. doi: 10.1007/s00484-017-1460-8
  24. Zenchenko TA, Medvedeva AA, Khorseva NI, Breus TK. Synchronization of human heart-rate indicators and geomagnetic field variations in the frequency range of 0.5–3.0 mHz. Izv. Atmos. Ocean. Phys. 2014;50:736–744. doi: 10.1134/S0001433814040094
  25. Zenchenko TA, Khorseva NI, Breus TK. Long-term study of the synchronization effect between geomagnetic field variations and minute-scale heart-rate oscillations in healthy people. Atmosphere, 2024;15(1):134. doi: 10.3390/atmos15010134
  26. Zenchenko TA, Jordanova M, Poskotinova LV, et al. Synchronization between human heart rate dynamics and Pc5 geomagnetic pulsations at different latitudes. Biophysics, 2014;59:965–972. doi: 10.1134/S0006350914060256
  27. Poskotinova L, Krivonogova E, Demin D, Zenchenko T. Differences in the sensitivity of the baroreflex of heart rate regulation to local geomagnetic field variations in normotensive and hypertensive humans. Life, 2022;12(7):1102. doi: 10.3390/life12071102
  28. Lukyanova SN. Neuroeffects of microwave EMF of non-thermal intensity and short exposure. Radiation biology. Radioecology. 2024;64(3):244–256. doi: 10.31857/S0869803124030026 EDN: MBQOJM
  29. Davis GE Jr, Lowell WE. Chaotic solar cycles modulate the incidence and severity of mental illness. Med. Hypotheses, 2004;62(2):207-214. doi: 10.1016/j.mehy.2003.11.006
  30. Baevsky RM, Ivanov GG, Chireikin LV, et al. Analysis of heart rate variability using various electrographic systems (methodological recommendations). Journal of Arrhythmology. 2002;(24):65–87. (In Russ.) EDN: HSPLXF
  31. Poskotinova LV, Krivonogova EV, Zenchenko TA, Demin DB. Features of synchronization of heart rate variability and local variations of the geomagnetic field component's in individuals with different blood pressure levels. In: Collection of scientific papers of the VI Congress of Biophysicists of Russia. Sochi; 2019. P. 364. (In Russ.) EDN: FOKRDR
  32. Zenchenko TA, Khorseva NI, Stankevich AA. The effect of synchronizing the human heart rhythm with geomagnetic field variations: are there distinguished frequencies? Biofizika. 2024;69(4):915–926. doi: 10.31857/S0006302924040221 EDN: NEXGFJ
  33. Poskotinova LV, Demin DB, Krivonogova EV, et al. Neurophysiological mechanisms of adaptation of Arctic residents with socially significant neurological and cardiovascular disorders and methods for correcting maladaptive disorders. FGBUN FITSKIA Ural Branch of the Russian Academy of Sciences. No 122011900077-8. Research report. 2021. EDN: ZCSLCD
  34. Sonkodi B. LF power of HRV could be the Piezo2 activity level in baroreceptors with some Piezo1 residual activity contribution. Int J Mol Sci. 2023;24(8):7038. doi: 10.3390/ijms24087038
  35. Zhou Z, Martinac B. Mechanisms of PIEZO channel inactivation. Int J Mol Sci. 2023;24(18):14113. doi: 10.3390/ijms241814113
  36. Mamberger KK, Makedonsky DF, Rudenko MYu, Rudenko SM. Functional interconnection between sinoatrial node of right atrium and low-pressure baroreceptors in aorta. Izvestiya sfedu. Engineering sciences. 2009;(7):23–29 EDN: KVBCKP
  37. Li K, Shi Y, Gonye EC, Bayliss DA. TRPM4 contributes to subthreshold membrane potential oscillations in multiple mouse pacemaker neurons. eNeuro. 2021;8(6):ENEURO.0212-21.2021. doi: 10.1523/ENEURO.0212-21.2021
  38. Hu Y, Cang J, Hiraishi K, et al. The Role of TRPM4 in cardiac electrophysiology and arrhythmogenesis. Int J Mol Sci. 2023;24(14):11798. doi: 10.3390/ijms241411798
  39. Martinez-Banaclocha M. Ephaptic coupling of cortical neurons: possible contribution of astroglial magnetic fields? Neuroscience. 2018;370:37–45. doi: 10.1016/j.neuroscience.2017.07.072
  40. Suenson M. Ephaptic impulse transmission between ventricular myocardial cells in vitro. Acta Physiol Scand. 1984;120(3):445–455. doi: 10.1111/j.1748-1716.1984.tb07405.x
  41. Adams WP, Raisch TB, Zhao Y, et al. Extracellular perinexal separation is a principal determinant of cardiac conduction. Circ Res. 2023;133(8):658–673. doi: 10.1161/CIRCRESAHA.123.322567

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Illustration of the correlation-based method for assessing synchronization of physiological parameters—heart rate (HR), RMSSD, and SI—with variations in the X component of the geomagnetic field (GMF): (a), superimposed raw time series of physiological parameters (red) and the horizontal GMF component from the Borok geophysical station (BOXX, blue); (b), superimposed filtered time series; (c), cross-correlation functions between values of each physiological parameter and the GMF component. Ks=–log₁₀(p)×sign(r), where r is the Spearman rank correlation coefficient and p is its statistical significance level. The red dashed line indicates the threshold of statistical significance at p=0.0045 (|Ks| >2.35).

下载 (484KB)
3. Fig. 2. Illustration of the wavelet spectrum comparison method. Left: wavelet spectra of BOXX geomagnetic field, heart rate (HR), RMSSD, and SI time series. Right: mean spectra of corresponding series along the ordinate axis.

下载 (1MB)
4. Fig. 3. Cumulative distribution of the frequency of biogeophysical synchronization between heart rate (HR) and heart rate variability (HRV) parameters with each horizontal component of the geomagnetic field (GMF) across all experiments: (a), cross-correlation analysis; (b), wavelet spectral similarity analysis. *p <0.05; **p <0.01; ***p <0.001. Asterisks next to the HRV parameter bars indicate the level of statistical significance for differences in synchronization frequency between HR and the respective HRV parameter with each GMF component.

下载 (151KB)
5. Fig. 4. Sample distributions of synchronization frequency between heart rate (HR) and heart rate variability (HRV) parameters with geomagnetic field components for group 1 volunteers using the correlation method. Legend is identical to that in Fig. 3.

下载 (400KB)
6. Fig. 5. Sample distributions of synchronization frequency between heart rate (HR) and heart rate variability (HRV) parameters with geomagnetic field components for group 1 volunteers using the wavelet spectrum comparison method. Legend is identical to that in Fig. 3.

下载 (486KB)
7. Fig. 6. Sample distributions of the frequency of synchronization events between heart rate (HR) and heart rate variability (HRV) parameters with components of the geomagnetic field for group 2 volunteers: (a), cross-correlation analysis; (b), wavelet spectrum comparison method. Legend is identical to that in Fig. 3.

下载 (121KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».