POTENTIAL DANGER OF NANOSIZED POWDER BLUE TO HUMAN HEALTH


Cite item

Full Text

Abstract

The data analysis presented in the studies of leading Russian and foreign centers on physico-chemical, molecular and biological, cytological and toxicological characteristics of nanosized powder blue has been done. Generalization of the information received and evaluation of potentially hazardous substances has shown that nanodispersed powder blue has a high degree of potential danger to human health. Powder blue nanoparticles have a size in the range of 41.2-77.9 nm, preferably of spherical shape, are hydrophobical, potentially high reactive. They have the ability to intracellular generation of reactive oxygen species causing the oxidative stress (particularly oxidative damage to proteins and indirect damage to DNA). They are able to DNA direct damage, having a dose and time-dependent character. They interact with the cell membrane, causing it damage (cytotoxicity), as evidenced by the decrease in mitochondrial activity, LDH release from cells, and fall of cells viability. A significant induction of chromosome aberrations is typical for powder blue nanoparticles. They cause a disturbance in proteomic and metabolomic profile, increase antioxidant enzyme of gene expression of HO-1, the production of cytokines MCP-1 and IL-8. They have possibly carcinogenic activity to humans, due to an increase in the level of intracellular reactive oxygen species formation, signaling cascades, damage to macromolecules - proteins and DNA.

About the authors

M A Zemlyanova

Federal Budget Science Institution "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies"; Federal State Educational Institution of Higher Education "Perm State National Research University"; Federal State Educational Institution of Higher Education "Perm National Research Polytechnic University"

Email: zem@fcrisk.ru
доктор медицинских наук, зав. отделом биохимических и цитогенетических методов диагностики; профессор кафедры экологии человека и безопасности жизнедеятельности; профессор кафедры охрана окружающей среды 614045, г. Пермь, ул. Монастырская, д. 82

A I Tiunova

Federal State Educational Institution of Higher Education "Perm State National Research University"

г. Пермь

M S Stepankov

Federal Budget Science Institution "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies"; Federal State Educational Institution of Higher Education "Perm State National Research University"

г. Пермь

A S Ivanova

Federal State Educational Institution of Higher Education "Perm State National Research University"

г. Пермь

References

  1. Глушкова А. В., Радилов А. С., Рембовский В. Р. Нанотехнологии и нанотоксикология - взгляд на проблему // Токсикологический вестник. 2007. № 6. С. 4-8.
  2. ГОСТ 12.1.007-76. ССБТ. Вредные вещества. Классификация и общие требования безопасности (с Изменениями 1, 2). М.: Стандартинформ, 2007. 7 с.
  3. Тутельян В. А., Гмошинский И. В., Глинцбург А. Л. Методические рекомендации по выявлению наноматериалов, представляющих потенциальную опасность для здоровья человека: метод. рекомендации № 1.2.2522-09. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 35 с.
  4. Alarifi S., Daoud A., Suliman A. O. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells // International Journal of Nanomedicine. 2013. Vol. 8. P. 189-199.
  5. Alinovi R., Goldoni M., Pinelli S., Campanini M. et al. Oxidative and pro-in ammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells // Toxicology in Vitro. 2015. Vol. 29. P. 426-437.
  6. Bishnu K. P., Ashutosh K. S., Srivastava N. Synthesis and cytogenetic effect of magnetic nanoparticles // Advanced Materials Letters. 2015. Vol. 6 (11). P. 954-960.
  7. Cavallo D., Ciervo A., Fresegna A. M., Maiello R. Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells // Journal of Applied Toxicology. 2015. Vol. 35. P. 1102-1013.
  8. Cobalt (II,III) oxide nanopowder, №50 nm particle size (TEM), 99.8% trace metals: material safety data sheet (MSDS) // Sigma-Aldrich. 2015. P. 8.
  9. Keng P. Y., Kim B. Y., Sahoo R. et al. Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires // ACSnano. 2009. Vol. 3, N 10. P. 3143-3157.
  10. Kong L., Tang M., Ting Z., Wang D. et al. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats // International Journal of Molecular Sciences. 2014. Vol. 15(11). Р 53-69.
  11. Li L. H., Xiao J. Yang Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal // Scientific reports. 2015. Vol. 5. P. 1-6.
  12. Magaye R., Zhao J., Bowman L. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review) // Experimental and therapeutic medicine. 2012. Vol. 4. P. 551-561.
  13. Mauro M., Crosera M., Pelin M. et al. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity // International Journal of Environmental Research and Public Health. 2015. Vol. 12. P. 8263-8280.
  14. Nazeruddin G. M., Shaikh Y. I. Synthesis of Cobalt Nanoparticles by Chemical Routes and its Antimicrobial Activity // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014. Vol. 5 (4). P. 225-232.
  15. Papis E., Rossi F., Raspanti M. et al. Engineered cobalt oxide nanoparticles readily enter cells // Toxicology Letters. 2009. Vol. 189. P. 253-259.
  16. Petrarca C., Clemente E., Amato V., Pedata P. et al. Engineered metal based nanoparticles and innate immunity // Clinical and Molecular Allergy. 2015. N 13. P. 1 - 12.
  17. Ponti J., Sabbioni E., Munaro B., Broggi F., Marmorato P. et al. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: An in vitro study in Balb/3T3 mouse fibroblasts // Mutagenesis. 2009. Vol. 24 (5). P. 439-445.
  18. Simko M., Gazso A., Fiedeler U., Nentwich M. Nanoparticles, free radicals and oxidative stress // Nano Trust-Dossiers. 2011. Vol. 12. P. 1-3.
  19. Venkataramanan R., Shruthi S., Savarimuthu P. et al. Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity // Experimental and therapeutic medicine. 2016. Vol. 11. P. 553-560.
  20. Vismara E., Valerio A., Coletti A., Torri G. Non-Covalent Synthesis of Metal Oxide Nanoparticle-Heparin Hybrid Systems: A New Approach to Bioactive Nanoparticles // International Journal of Molecular Sciences. 2013. Vol. 14. P. 13463-13481.

Copyright (c) 2018 Human Ecology


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies