FETAL HYPOXIA AS A CAUSE OF UNVAFOURABLE PREGNANCY OUTCOMES: A SYSTEMATIC REVIEW OF ASSESSMENT METHODS

Cover Page

Cite item

Full Text

Abstract

Hypoxia is one of the most frequent and serious types of stress for the human body. Hypoxia during pregnancy has adverse effects on fetal that may have implications not only for antenatal, but also postnatal period and even adulthood. Hypoxia usually occurs due to the placental insufficiency - a process in which there is a progressive decrease of the placental functions, when the transfer of oxygen and nutrients to the fetus through the placenta decreases, which leads to hypoxia and acidosis. Subsequent fetal hypoxemia stimulates the suppression of metabolic responses to preserve available nutrients, resulting in fetal growth restriction. This article presents an overview of modern scientific literature considering an etiology and pathophysiology of fetal hypoxia. Special attention is paid on the methods of evaluating fetal hypoxia in obstetric practice, such as Doppler, measuring lactate from fetal scalp blood testing, CTG monitoring, detection of RNA caused by hypoxia in maternal blood, measurement of the pH of the umbilical cord vessels, ECG-STan, fetal pulsoximetry. A new parameter for assessing the condition of the fetus, called the "non-reassuring fetal status" was observed, and the diagnostic criteria were described thoroughly. This systematic review presents a qualitative analysis of diagnostic methods and predictors of the outcome of pregnancies with acute and progressive fetal hypoxia. The study includes full-text publications in Russian and English on the methods of assessing the state of fetal hypoxia during pregnancy and childbirth, as well as their validity. In total, 548 sources were identified in PubMed, SCOPUS and eLIBRARY.RU databases. After screening, 53 articles were selected and included in the qualitative synthesis.

About the authors

E. A. Makarovskaia

Northern State Medical University

Arkhangelsk, Russia

A. N. Baranov

Northern State Medical University

Email: a.n.baranov2011@yandex.ru
доктор медицинских наук, профессор, заведующий кафедрой акушерства и гинекологии Arkhangelsk, Russia

N. G. Istomina

Northern State Medical University

Arkhangelsk, Russia

P. P. Revaco

Northern State Medical University

Arkhangelsk, Russia

References

  1. Акушерство: национальное руководство / под ред. Г М. Савельевой, Г.Т. Сухих, В. Н. Серова, В. Е. Радзинского. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2018. 1088 с.
  2. Колыбина П. В., Ившин А. А. Фетальная пульсоксиметрия - новый тренд в диагностике интранатальной гипоксии плода // Проблемы современной науки и образования. 2016. № 13 (55). С. 132-134.
  3. Кузнецов П. А., Козлов П. В. Гипоксия плода и асфиксия новорожденного // Лечебное дело. 2017. № 4. С. 9-15.
  4. Уразов М. Д., Астраханова Т. А., Усенко А. В., Мищенко Т. А., Щелчкова Н. А., Кравченко Г. А., Ведунова М. В., Митрошина Е. В. Новые аспекты адаптации центральной нервной системы к пренатальной гипоксии // Современные технологии в медицине. 2018. № 4. Т. 10. С 60-68.
  5. ACoG Committee on Obstetric Practice. ACOG Committee Opinion No. 348, November 2006: Umbilical cord blood gas and acid-base analysis. Obstet Gynecol. 2006, 108 (5), pp. 1319-1322.
  6. Ananth C. V., Oyelese Y., Prasad V., Getahun D., Smulian J. C. Evidence of placental abruption as a chronic process: associations with vaginal bleeding early in pregnancy and placental lesions. Eur J Obstet Gynecol Reprod Biol. 2006, 128 (1-2), pp. 15-21.
  7. Ayres-De-Campos D., Spong C. Y., Chandraharan E. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 2015, 135 (1), pp. 13-24.
  8. Browne V. A., Julian C. G., Toledo-Jaldin L., Cioffi-Ragan D., Vargas E., Moore L.G. Uterine artery blood flow, fetal hypoxia and fetal growth. Philos Trans R Soc Lond B Biol Sci. 2015, 370 (1663).
  9. Brunelli R., Masselli G., Parasassi T., De Spirito M., Papi M., Perrone G., Pittaluga E., Gualdi G., Pollettini E., Pittalis A., Anceschi M.M. Intervillous circulation in intrauterine growth restriction. Correlation to fetal well-being. Placenta. 2010, 31 (12), pp. 1051-1056.
  10. Cantu J., Jeff M. Szychowski, Xuelin Li, Joseph Biggio, Rodney K. Edwards, William Andrews, Alan T. N. Tita Predicting fetal acidemia using umbilical venous cord gas parameters. Obstet Gynecol. 2014, 124 (5), pp. 926-932.
  11. Crimmins S., Desai A., Block-Abraham D., Berg C., Gembruch U., Baschat A. A. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am J Obstet Gynecol. 2014, 211, pp. 669.e1-10.
  12. Doret M., Constans A., Gaucherand P. Physiologic basis for fetal heart rate analysis during labour J. Gynecol. Obstet. Biol. Reprod. 2010, 39 (4), p. 276.
  13. East C. E., Begg L., Colditz P. B., Lau R. Fetal pulse oximetry for fetal assessment in labour. Cochrane Database of Systematic Reviews. 2014, 10.
  14. Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists' Task Force on Neonatal Encephalopathy. Obstet Gynecol. 2014, 123, pp. 896-901.
  15. Fahey J., King T. L. Intrauterine asphyxia: clinical implications for providers of intrapartum care. JMidw Womens Health. 2005, 50, pp. 498-506.
  16. Flenady V., Koopmans L., Middleton P. et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet. 201 1, 377, рр. 1331-40.
  17. Flenady V., Wojcieszek A. M., Middleton P., Ellwood D., Erwich J. J., Coory M., Khong T. Y., Silver R. M., Smith G. C., Boyle F. M., Lawn J. E., Blencowe H., Leisher S. H., Gross M. M., Horey D., Farrales L., Bloomfield F., McCowan L., Brown S. J., Joseph K. S., Zeitlin J., Reinebrant H. E., Ravaldi C., Vannacci A., Cassidy J., Cassidy P., Farquhar C., Wallace E., Siassakos D., Heazell A. E., Storey C., Sadler L., Petersen S., Freen J. F., Goldenberg R. L. Lancet Ending Preventable Stillbirths study group; Lancet Stillbirths In High-Income Countries Investigator Group. Stillbirths: recall to action in high-income countries. Lancet. 2016, 387 (10019), рр. 691-702.
  18. Fry M. Essential biochemistry for medicine. 2nd ed. John Wiley & Sons, 2011.
  19. Görkem S. B., Coçkun A., Eçlik M, Kütük M. S., Öztürk A. Diffusion-weighted imaging of placenta in intrauterine growth restriction with worsening Doppler US findings. Diagn Interv Radiol. 2019, 25 (4), рр. 280-284.
  20. Gravett C., Eckert L. O., Gravett M. G., et al. Nonreassuring fetal status: Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2016, 34 (49), рр. 6084-6092.
  21. Habek D., Hodek B., Herman R., Habek J. C. Fetal hypoxia--etiology and pathophysiology of hypoxic damage. Lijec Vjesn. 2000, 122 (3-4), рр. 82-89.
  22. Hannan N. J., Stock O., Spencer R., et al. Circulating mRNAs are differentially expressed in pregnancies with severe placental insufficiency and at high risk of stillbirth. BMC Med. 2020, 18 (1), р. 145.
  23. Konje J. C., Kaufmann P., Bell S. C., Taylor D. J. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol. 2001, 185, рр. 608-613.
  24. Kruger K., Hallberg B., Blennow M., Kublickas M., Westgren M. Predictive value of fetal scalp blood lactate concentration and pH as markers of neurologic disability. Am J Obstet Gynecol. 1999, 181, рр. 1072-1078.
  25. Lawn J. E., Blencowe H., Pattinson R. et al. Stillbirths: where? When? Why? How to make the data count? Lancet. 201 1, 377, рр. 1448-1463.
  26. Lawn J. E., Lee A. C., Kinney M. et al. Two million intrapartum-related stillbirths and neonatal deaths: where, why, and what can be done? Int J Gynecol Obstet. 2009, 107 (Suppl 1), рр. S5-18.S19.
  27. Lees C. C., Stampalija T., Baschat A. A., da Silva Costa F., Ferrazzi E., Figueras F., Hecher K., Kingdom J., Poon L. C., Salomon L. J., Unterscheider J. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020, 56, рр. 298-312.
  28. Levytska K., Higgins M., Keating S., Melamed N., Walker M., Sebire N. J., Kingdom J. C. Placental Pathology in Relation to Uterine Artery Doppler Findings in Pregnancies with Severe Intrauterine Growth Restriction and Abnormal Umbilical Artery Doppler Changes. Am J Perinatol. 2017, 34, рр. 451-457.
  29. Mari G., Picconi J. Doppler vascular changes in intrauterine growth restriction. Semin. Perinatol. 2008, 32, рр. 182-189.
  30. Martin C. B., Jr. Normal fetal physiology and behavior, and adaptive responses with hypoxemia. Sem Perinatol. 2008, 32, рр. 239-242.
  31. McClure E. M., Saleem S., Goudar S. S., Garces A., Whitworth R., Esamai F., Patel A. B., Tikmani S. S., Mwenechanya M., Chomba E., Lokangaka A., Bose C. L., Bucher S., Liechty E. A., Krebs N. F., Yogesh Kumar S., Derman R. J., Hibberd P L., Carlo W A., Moore J. L., Nolen T. L., Koso-Thomas M., Goldenberg R. L. Stillbirth 2010-2018: a prospective, population-based, multi-country study from the Global Network. Reprod Health. 2020, 17 (Suppl 2), р. 146.
  32. Miller S. L., Huppi P S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016, 594 (4), рр. 807-823.
  33. National Collaborating Centre for Women's and Children's Health (UK). Intrapartum Care: Care of Healthy Women and Their Babies During Childbirth. London: RCOG Press, 2007 Sep.
  34. Oros D., Ruiz-Martinez S., Staines-Urias E., Conde-Agudelo A., Villar J., Fabre E., Papageorghiou A. T. Reference ranges for Doppler indices of umbilical and fetal middle cerebral arteries and cerebroplacental ratio: systematic review. Ultrasound Obstet Gynecol. 2019, 53, рр. 454-464.
  35. Palmer S. K., Zamudio S., Coffin C., Parker S., Stamm E., Moore L. G. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet Gynecol. 1992, 80, рр. 1000-1006.
  36. Peat S., Booker M., Lanigan C., Ponte J. Continuous intrapartum measurement of fetal oxygen saturation. Lancet. 1988, 2 (8604), р. 213.
  37. Perrone S., Santacroce A., de Bernardo G., Alagna M. G., Carbone S. F., Paterno I., Buonocore G. Magnetic Resonance Imaging in Pregnancy with Intrauterine Growth Restriction: A Pilot Study. Dis Markers. 2019.
  38. Ross M. G. Labor and fetal heart rate decelerations: relation to fetal metabolic acidosis. Clin Obstet Gynecol. 2011, 54, рр. 74-82.
  39. Salvanos J. B. Should we act on a high umbilical cord lactate in an otherwise healthy neonate? Arch Dis Child. 2020, 105 (2), рр. 200-202.
  40. Sau A., Langford K. Ante- and intrapartum assessment of the fetus. Anesthesia and intensive care medicine. 2004, 5 (7), рр. 228-230.
  41. Sänger N., Hayes-Gill B. R., Schiermeier S., Hatzmann W, Yuan J., Herrmann E., Louwen F., Reinhard J. Prenatal Foetal Non-invasive ECG instead of Doppler CTG - A Better Alternative? J. Geburtsh Frauenheilk. 2012, 72, рр. 630-633.
  42. Spencer R., Ambler G., Brodszki J., Diemert A., Figueras F., Gratacôs E., Hansson S. R., Hecher K., Huertas-Ceballos A., Marlow N., Marsal K., Morsing E., Peebles D., Rossi C., Sebire N. J., Timms J. F., David A. L., & EVERREST Consortium EVERREST prospective study: a 6-year prospective study to define the clinical and biological characteristics of pregnancies affected by severe early onset fetal growth restriction. BMC pregnancy and childbirth. 2017, 17 (1), р. 43.
  43. Stampalija T., Casati D., Monasta L., Sassi R., Rivolta M. W., Muggiasca M. L., Bauer A., Ferrazzi E. Brain sparing effect in growth-restricted fetuses is associated with decreased cardiac acceleration and deceleration capacities: a case-control study. BJOG. 2016, 123 (12), рр. 1947-1954.
  44. United Nations Inter-Agency Group for Child Mortality Estimation (UN IGME). A Neglected Tragedy: The global burden of stillbirths. United Nations Children’s Fund, 2020.
  45. Valverde M., Puertas A. M., Lopez-Gallego M. F., Carrillo M. P., Aguilar M. T., Montoya F. Effectiveness of pulse oximetry versus fetal electrocardiography for the intrapartum evaluation of nonreassuring fetal heart rate. Eur J Obstet Gynecol Reprod Biol. 2011, 159, рр. 333-337.
  46. Vayssiere C., David E., Meyer N., Haberstich R., Sebahoun V., Roth E., et al. A French randomized controlled trial of ST-segment analysis in a population with abnormal cardiotocograms during labor. Am J Obstet Gynec. 2007, 197 (3), 299.e1-e6.
  47. Victory R., Penava D., Da Silva O., Natale R., Richardson B. Umbilical cord pH and base excess values in relation to adverse outcome events for infants delivering at term. Am J Obstet Gynecol. 2004, 191 (6), рр. 2021-2028. doi: 10.1016/j.ajog.2004.04.026.
  48. Westerhuis M. E., Visser G. H., Moons K. G., Zuithoff N., Mol B. W., Kwee A. Cardiotocography plus ST analysis of fetal electrocardiogram compared with cardiotocography only for intrapartum monitoring: a randomized controlled trial. Obstet. Gynecol. 2011, 117 (2 Pt 1), р. 406.
  49. Whitehead C. L., Teh W. T., Walker S. P, et al. Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS One. 2013, 8, e78487.
  50. Whitehead C., Teh W T., Walker S. P, et al. Quantifying circulating hypoxia-induced RNA transcripts in maternal blood to determine in utero fetal hypoxic status. BMC Med. 2013, 11, р. 256.
  51. Yakiçtiran B., Katlan D. C., Yüce T., Koç A. Neural and cardiac injury markers in fetal growth restriction and their relation to perinatal outcomes. Turk J Obstet Gynecol. 2019, 16 (1), рр. 50-54.
  52. Zamudio S., et al. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS ONE. 2010, 5, e8551.

Copyright (c) 2021 Makarovskaia E.A., Baranov A.N., Istomina N.G., Revaco P.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies