EPIGENETIC MARKERS OF THE INFLUENCE OF PARTICULATE MATTER WITH DIFFERENT AERODYNAMIC DIAMETERS ON HUMAN HEALTH: A REVIEW

Cover Page

Cite item

Full Text

Abstract

In this review article we provide an overview of epigenetic markers associated with the effects of particulate matter with different aerodynamic diameters, namely, PM0,1, PM, PM10 and PM2,5-10. The developed list of more than 150 epigenetic signatures of environmental pollutants on different human health conditions may contribute to the development of novel methodological approaches to early detection of diseases in individuals exposed to particulate matter. In addition, this work can become a prerequisite for the development of fundamentally new air purification systems.

About the authors

A. G. Titova

Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: titova@cspmz.ru
аналитик отдела анализа и прогнозирования медико-биологических рисков здоровью Moscow, Russia

I. A. Zanyatkin

Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Moscow, Russia

A. G. Volkova

Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Moscow, Russia

D. N. Nechaev

Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Moscow, Russia

G. A. Trusov

Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Moscow, Russia

References

  1. Abbas I., Verdin A., Escande F., Saint-Georges F., Cazier F., Mulliez P, Garpon G. In vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model. Environmental Research. 2016, 147, pp. 146-158. doi: 10.1016/j.envres.2016.01.041
  2. Agodi A., Barchitta M., Quattrocchi A., Maugeri A., Canto C., Marchese A. E., & Vinciguerra M. Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes & Nutrition. 2015, 10 (5). doi: 10.1007/s12263-015-0480-4
  3. Barchitta M., Maugeri A., Quattrocchi A., Barone G., Mazzoleni P., Catalfo A., Agodi A. Mediterranean Diet and Particulate Matter Exposure Are Associated With LINE-1 Methylation: Results From a Cross-Sectional Study in Women. Frontiers in Genetics. 2018, 9. DOI: 10.3389/ fgene.2018.00514
  4. Barchitta M., Quattrocchi A., Maugeri A., Barone G., Mazzoleni P., Catalfo A., Agodi A. Integrated approach of nutritional and molecular epidemiology, mineralogical and chemical pollutant characterisation: the protocol of a cross-sectional study in women. BMJ Open. 2017, 7 (4), e014756. doi: 10.1136/bmjopen-2016-014756
  5. Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., & Agodi A. LINE-1 Hypomethylation in Blood and Tissue Samples as an Epigenetic Marker for Cancer Risk: A Systematic Review and Meta-Analysis. PLOS One. 2014, 9 (10), e109478. doi: 10.1371/journal.pone.0109478
  6. Baylin S. B., & Jones P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature Reviews Cancer. 2011, 11 (10), pp. 726-734. doi: 10.1038/nrc3130
  7. Bhargava A., Bunkar N., Aglawe A., Pandey K. C., Tiwari R., Chaudhury K., Goryacheva I. Y., Mishra P. K. Epigenetic Biomarkers for Risk Assessment of Particulate Matter Associated Lung Cancer. Current Cancer Drug Targets. 2018, 19 (10), рp. 1 127-1 147. doi: 10.2174/13894501 18 666170911114342
  8. Bhargava A., Shukla A., Bunkar N., Shandilya R., Lodhi L., Kumari R., Mishra P. K. Exposure to ultrafine particulate matter induces NF-Kß mediated epigenetic modifications. Environmental Pollution. 2019. doi: 10.1016/j.envpol.2019.05.065
  9. Bhargava A., Tamrakar S., Aglawe A., Lad H., Srivastava R. K., Mishra D. K., Mishra P K. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. Environmental Pollution. 2018, 234, pp. 406-419. doi: 10.1016/j.envpol.2017.1 1.093
  10. Bojesen S. E., Timpson N., Relton C., Davey Smith G., & Nordestgaard B. G. AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax. 2017, 72 (7), pp. 646-653. DOI: 10.1136/ thoraxjnl-2016-208789
  11. Brook R. D., et al. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ Health Perspect. 2014, 122 (6), pp. 624-630. doi: 10.1289/ehp.13065954
  12. Cantone L., Nordio F., Hou L., Apostoli P., Bonzini M., Tarantini L., Baccarelli A. Inhalable Metal-Rich Air Particles and Histone H3K4 Dimethylation and H3K9 Acetylation in a Cross-sectional Study of Steel Workers. Environmental Health Perspectives. 2011, 119 (7), pp. 964-969. doi: 10.1289/ehp.1002955
  13. Cao Q., Rui G. & Liang Y. Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model. BMC Public Health. 2018, 18, 925. doi: 10.1186/s12889-018-5844-4
  14. Ceccaroli C., Pulliero A., Geretto M., & Izzotti A. Molecular Fingerprints of Environmental Carcinogens in Human Cancer. Journal of Environmental Science and Health. 2015, рt. C, 33 (2), pp. 188-228. doi: 10.1080/10590501.2015.1030491
  15. Chen R., Meng X., Zhao A., Wang C., Yang C., Li H. Kan H. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: A randomized crossover trial. Environment International. 2016, 94, pp. 614-619. doi: 10.1016/j.envint.2016.06.026
  16. Croker B. A., Kiu H., & Nicholson S. E. SOCS regulation of the JAK/STAT signalling pathway. Seminars in Cell & Developmental Biology. 2018, 19 (4), pp. 414-422. doi: 10.1016/j.semcdb.2008.07.010
  17. Dhingra R., Nwanaji-Enwerem J. C., Samet M., & Ward-Caviness C. K. DNA Methylation Age - Environmental Influences, Health Impacts, and Its Role in Environmental Epidemiology. Current Environmental Health Reports. 2018. doi: 10.1007/s40572-018-0203-2
  18. Fajersztajn L., Veras M., Barrozo L. V, & Saldiva. Air pollution: a potentially modifiable risk factor for lung cancer. Nature Reviews Cancer. 2013, 13 (9), pp. 674-678. doi: 10.1038/nrc3572
  19. Ferrari L., Carugno M., & Bollati V. Particulate matter exposure shapes DNA methylation through the lifespan. Clinical Epigenetics. 2019, 11 (1). doi: 10.1186/s13148-019-0726-x
  20. Gondalia R., Baldassari A., Holliday K. M., Justice A. E., Mendez-Giraldez R., Stewart J. D., Whitsel E. A. Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation. Environment International. 2019, 104723. DOI: 10.1016/j. envint.2019.03.071
  21. Landrigan P J., et al. The Lancet Commission on pollution and health. Lancet. 2018, 391 (101 19), pp. 462512. doi: 10.1016/S0140-6736(17)32345-0
  22. Ming-Yue Li, Li-Zhong Liu, Wende Li, et al., Malcolm J. Underwood, Nirmal Kumar Gali, Zhi Ning and George G. Chen, Ambient fine particulate matter inhibits 15-lipoxygenases to promote lung carcinogenesis. Journal of Experimental & Clinical Cancer Research. 2019, 38, p. 359. doi: 10.1186/s13046-019-1380-z
  23. Niiranen T. J., & Vasan R. S. Epidemiology of cardiovascular disease: recent novel outlooks on risk factors and clinical approaches. Expert Review of Cardiovascular Therapy. 2016, 14 (7), pp. 855-869. doi: 10.1080/14779072.2016.1 176528
  24. Panni T., Mehta A. J., Schwartz J. D., Baccarelli A. A., Just A. C., Wolf K., Peters A. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study. Environmental Health Perspectives. 2016, 124 (7). doi: 10.1289/ehp.1509966
  25. Piao M. J., Ahn M. J., Kang K. A., Ryu Y. S., Hyun Y. J., Shilnikova K., Hyun J. W. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Archives of Toxicology. 2018, 92 (6), pp. 2077-2091. doi: 10.1007/s00204-018-2197-9
  26. Ramesar R. S. Epigenetics - an introductory overview. South African Medical Journal. 2019, 109 (6), p. 371. doi: 10.7196/samj.2019.v109i6.14068
  27. Ryu Y. S., Kang K. A., Piao M. J., Ahn M. J., Yi J. M., Bossis G., Hyun J. W Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications. Experimental & Molecular Medicine. 2019, 51 (9). doi: 10.1038/s12276-019-0305-4
  28. Saenen N. D., et al. Children’s urinary environmental carbon load. A novel marker reflecting residential ambient air pollution exposure? American Journal of Respiratory and Critical Care Medicine. 2017, 196 (7), pp. 873-881. doi: 10.1164/rccm.201704-0797OC5
  29. Saffari A., Silver M. J., Zavattari P, Moi L., Columbano A., Meaburn E. L., & Dudbridge F. Estimation of a significance threshold for epigenome-wide association studies. Genetic Epidemiology. 2017, 42 (1), pp. 20-33. doi: 10.1002/gepi.22086
  30. Soberanes S., Gonzalez A., Urich D., Chiarella S. E., Radigan K. A. Osornio-Vargas A., Budinger G. R. S. Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway. Scientific Reports. 2012, 2 (1). doi: 10.1038/srep00275
  31. Sun B., Shi Y., Yang X., Zhao T., Duan J., & Sun Z. DNA methylation: A critical epigenetic mechanism underlying the detrimental effects of airborne particulate matter. Ecotoxicology and Environmental Safety. 2018, 161, pp. 173-183. doi: 10.1016/j.ecoenv.2018.05.083
  32. Tantoh D. M., Lee K.-J., Nfor O. N., Liaw Y.-C., Lin C., Chu H.-W, Liaw Y.-P Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM2.5 concentrations. Clinical Epigenetics. 2019, 11 (1). doi: 10.1186/s13148-019-0662-9
  33. Tarantini L., Bonzini M., Tripodi A., et al. Blood hypomethylation of inflammatory genes mediates the effects of metal-rich airborne pollutants on blood coagulation. Occupational and Environmental Medicine. 2013. doi: 10.1136/oemed-2012-101079
  34. Thomas A Werfel, David L Elion, Bushra Rahman, Donna J Hicks, Violeta Sanchez, Paula I Gonzalez-Ericsson, Mellissa J Nixon, Jamaal L James, Justin M Balko, Peggy Scherle, Holly K. Koblish and Rebecca S. Cook Treatment-induced tumor cell apoptosis and secondary necrosis drive tumor progression in the residual tumor microenvironment through MerTK and IDO-1. Cancer Research. 2018. DOI: 10.1 158/0008-5472.CAN-18-1106
  35. Wang C., Chen R., Shi M., Cai J., Shi J., Yang C., Weinberg C. R. Possible Mediation by Methylation in Acute Inflammation Following Personal Exposure to Fine Particulate Air Pollution. American Journal of Epidemiology. 2017, 187 (3), pp. 484-493. doi: 10.1093/aje/kwx277
  36. Wang C., O’Brien K. M., Xu Z., Sandler D. P, Taylor J. A., & Weinberg C. R. Long-term ambient fine particulate matter and DNA methylation in inflammation pathways: results from the Sister Study. Epigenetics. 2019, 1-12. doi: 10.1080/15592294.2019.1699894
  37. White A. J., Kresovich J. K., Keller J. P., Xu Z., Kaufman J. D., Weinberg C. R., Sandler D. P Air pollution, particulate matter composition and methylation-based biologic age. Environment International. 2019, 132, p. 105071. doi: 10.1016/j.envint.2019.105071
  38. Xiao T., Ling M., Xu H., Luo F., Xue J., Chen C., Liu Q. NF-KB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicology and Applied Pharmacology. 2019, 377, p. 114616. DOI: 10.1016/j. taap.2019.1 14616

Copyright (c) 2021 Titova A.G., Zanyatkin I.A., Volkova A.G., Nechaev D.N., Trusov G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies