Интеллектуальные методы анализа данных в биомедицинских исследованиях: деревья классификации

Обложка
  • Авторы: Наркевич А.Н.1, Виноградов К.А.1, Гржибовский А.М.2,3,4,5
  • Учреждения:
    1. ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого»
    2. ФГБОУ ВО «Северный государственный медицинский университет»
    3. Западно-Казахстанский медицинский университет им. Марата Оспанова
    4. Казахский Национальный Университет им. аль-Фараби
    5. ФГАОУ ВО «Северо-Восточный федеральный университет им. М. К. Аммосова»
  • Выпуск: Том 28, № 3 (2021)
  • Страницы: 54-64
  • Раздел: Статьи
  • URL: https://journals.rcsi.science/1728-0869/article/view/64425
  • DOI: https://doi.org/10.33396/1728-0869-2021-3-54-64
  • ID: 64425

Цитировать

Полный текст

Аннотация

Задачи современных биомедицинских исследований требуют все более сложных методов анализа данных. В последнее время под анализом данных все реже понимают проверку статистических гипотез с помощью классических статистических критериев и оценку связи между признаками с помощью корреляционного анализа и все чаще в понятие анализ данных вкладывается более всестороннее изучение полученных в результате эмпирических исследований данных с применением многомерных статистических методов. Одним из таких методов анализа с большим потенциалом использования в технологиях искусственного интеллекта, анализе больших данных и машинном обучении данных является дерево классификации, или дерево решений. Целью данной статьи является рассмотрение вопросов применения деревьев классификации в медико-биологических исследованиях, а также представление примеров их построения в наиболее часто применяемых статистических программах. В статье приведены описание задачи, которая может быть решена с помощью деревьев классификации, пример набора данных для их построения, а также построение модели дерева классификации в IBM SPSS Statistics и StatSoft Statistica. Применение при анализе данных медико-биологических экспериментов дерева классификации, как одного из относительно легко используемых и интерпретируемых методов многомерного анализа данных, позволит более глубоко изучать закономерности явлений и состояний в области медицины и биологии.

Об авторах

Артем Николаевич Наркевич

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого»

Email: narkevichart@gmail.com
доктор медицинских наук, зав. лабораторией медицинской кибернетики и управления в здравоохранении, зав. кафедрой медицинской кибернетики и информатики г. Красноярск

Константин Анатольевич Виноградов

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого»

г. Красноярск

Андрей Мечиславович Гржибовский

ФГБОУ ВО «Северный государственный медицинский университет»; Западно-Казахстанский медицинский университет им. Марата Оспанова; Казахский Национальный Университет им. аль-Фараби; ФГАОУ ВО «Северо-Восточный федеральный университет им. М. К. Аммосова»

Архангельск

Список литературы

  1. Гржибовский А. М., Иванов С. В., Горбатова М. А. Однофакторный линейный регрессионный анализ с использованием программного обеспечения Statistica и SPSS // Наука и здравоохранение. 2017. № 2. С. 5-33
  2. Калагина Л. С., Сморкалова В. М., Зобкова Т. И. Деревья классификации в прогнозировании исходов гепатита Аудетей // Медицинский альманах. 2011. № 4. С. 207-210
  3. Калагина Л. С., Сморкалова В. М., Зобкова Т. И. Математическая модель прогнозирования исходов легкой формы гепатита B у детей // Педиатрия. Журнал им. Г. Н. Сперанского. 2012. Т. 91, № 4. С. 156-159
  4. Кондрова Н. С., Зулькарнаев Т. Р., Франц М. В. Потенциал здоровья работников как компонент человеческого потенциала организации // Гигиена и санитария. 2018. Т. 97, № 2. С. 164-171
  5. Константинова Е. Д., Вараксин А. Н., Жовнер И. В. Определение основных факторов риска развития неинфекционных заболеваний: метод деревьев классификации // Гигиена и санитария. 2013. Т. 92, № 5. С. 69-72
  6. Наркевич А. Н., Виноградов К. А. Настольная книга автора медицинской диссертации: пособие. М.: Инфра-М, 2019. 454 с
  7. Наркевич А. Н, Виноградов К. А., Корецкая Н. М., Наркевич А. А. Использование прогностических математических моделей для выявления больных туберкулезом легких // Туберкулез и болезни легких. 2014. № 9. С. 44-45
  8. Фомина Е. Е. Возможности метода деревьев классификации при обработке социологической информации // Гуманитарный вестник. 2018. № 11. С. 5
  9. Халафян А. А., Виноградов Р. А., Акиньшина В. А., Кошкаров А. А. Система поддержки принятия решений при выборе тактики коррекции стеноза внутренних сонных артерий // Врач и информационные технологии. 2018. № 2. С. 29-38
  10. Харевич О. Н., Лаптева И. М., Лаптева Е. А., Королева Е. Г. Клинические фенотипы тяжелой астмы (по результатам кластерного анализа) // Вестник Санкт-Петербургского университета. Медицина. 2015. № 2. С. 28-39
  11. Шарашова Е. Е., Холматова К. К., Горбатова М. А., Гржибовский А. М. Применение множественного логистического регрессионного анализа в здравоохранении с использованием пакета статистических программ SPSS // Наука и здравоохранение. 2017. № 4. С. 5-26
  12. Bamber J. H., Evans S. A. The value of decision tree analysis in planning anaesthetic care in obstetrics. International Journal of Obstetric Anesthesia. 2016. 27, pp. 55-61. doi: 10.1016/j.ijoa.2016.02.007.
  13. Ben-Gal I., Dana A., Shkolnik N., Singer G. Efficient Construction of Decision Trees by the Dual Information Distance Method. Quality Technology & Quantitative Management. 2014, 11 (1), pp. 133-147.
  14. Bewick V, Cheek L., Ball J. Statistics review 14: Logistic regression. Critical Care. 2005, 9 (1), pp. 112-118.
  15. Bewick V, Cheek L., Ball J. Statistics review 7: Correlation and regression. Critical Care. 2003, 7 (6), pp. 451-459.
  16. Deng H., Runger G., Tuv E. Bias of importance measures for multi-valued attributes and solutions. Proceedings of the 21st International Conference on Artificial Neural Networks (ICANN). 2011, pp. 293-300.
  17. Distinguin L., Blanchard M., Rouillon I., Parodi M., Loundon N. Pediatric cochlear reimplantation: Decision-tree efficacy. European Annals of Otorhinolaryngology, Head and Neck Diseases. 2018, 135 (4), pp. 243-247. DOI: 10.1016/j. anorl.2018.05.002.
  18. Garonzik-Wang J. M., Majella Doyle M. B. Decision Tree for Liver Resection for Hepatocellular Carcinoma. JAMA Surgery. 2016, 151 (9), pp. 853-854. DOI: 10.1001/ jamasurg.2016.1 149.
  19. Laurent H., Rivest R. L. Constructing Optimal Binary Decision Trees is NP-complete. Information Processing Letters. 1976, 5 (1 ), pp. 15-17. doi: 10.1016/0020-0190(76)90095-8.
  20. Schneider A., Hommel G., Blettner M. Linear Regression Analysis. Part 14 of a Series on Evaluation of Scientific Publications. Deutsches Ärzteblatt International. 2010, 107 (44), pp. 776-782.
  21. Suzuki S., Ukiya T., Kawauchi Y., Ishii H., Sugihara N. Decision tree analysis for factors associated with dental caries in school-aged children in Japan. Community Dental Health Journal. 2018, 35 (4), pp. 247-251. DOI: 10.1922/ CDH_4409Suzuki05.
  22. Tayefi M., Esmaeili H., Saberi Karimian M., Amirabadi Zadeh A., Ebrahimi M., Safarian M., Nematy M., Parizadeh S. M. R., Ferns G. A., Ghayour-Mobarhan M. The application of a decision tree to establish the parameters associated with hypertension. Computer Methods and Programs in Biomedicine. 2017, 139, pp. 83-91. DOI: 10.1016/j. cmpb.2016.10.020.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Наркевич А.Н., Виноградов К.А., Гржибовский А.М., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».