Современные представления о функции внешнего дыхания лыжников-гонщиков: бронхоконстрикция, сезон и работоспособность

Обложка

Цитировать

Полный текст

Аннотация

Обзор систематизирует современные знания об адаптации и дезадаптации системы внешнего дыхания и вентиляции во время физической нагрузки у лыжников-гонщиков как представителей спортсменов, тренирующих выносливость. В последнее время исследователи заявляют о возможной лимитирующей роли системы внешнего дыхания для физической работоспособности и результативности спортсменов, однако эти работы остаются малочисленными и иногда противоречивыми. Обзор охватывает как общеизвестные изменения в виде бронхоконстрикции дыхательных путей, индуцированных физической нагрузкой, так и менее известные феномены, такие как сезонная динамика функции внешнего дыхания лыжников-гонщиков. Показано, что бронхоконстрикция, индуцированная физической нагрузкой, является часто встречающейся особенностью профессиональных лыжников, тренирующихся в сухом холодном климате, она имеет две различные формы: астматическую и не астматическую. При этом недостаточно исследований, раскрывающих влияние бронхоконстрикции на выносливость спортсменов. Динамическое изменение резерва дыхания при физической нагрузке у лыжников может служить ценным показателем дезадаптации и адаптации системы дыхания к спортивной деятельности. А наличие подтверждённой годовой динамики показателей функции внешнего дыхания следует учитывать при проведении исследований и интерпретации результатов спирометрии. В обзоре впервые предпринята попытка комплексного осмысления механизмов ограничения физической работоспособности спортсменов со стороны системы внешнего дыхания. К ключевым факторам, лимитирующим потребление кислорода при физической нагрузке у лыжников-гонщиков, отнесены утомление дыхательных и локомоторных мышц, развитие гипоксемии, ограничение потока выдоха. Эти данные необходимы для разработки более эффективных стратегий профилактики нарушений функции лёгких для поддержания физической работоспособности спортсменов на высоком уровне.

Об авторах

Алла Константиновна Веселик

Институт физиологии Коми научного центра Уральского отделения Российской академии наук Федерального государственного бюджетного учреждения науки Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук»

Автор, ответственный за переписку.
Email: veselik.ak@mail.ru
ORCID iD: 0000-0001-8376-7570
SPIN-код: 4473-8093
Россия, Сыктывкар

Нина Геннадьевна Варламова

Институт физиологии Коми научного центра Уральского отделения Российской академии наук Федерального государственного бюджетного учреждения науки Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук»

Email: nivarlam@physiol.komisc.ru
ORCID iD: 0000-0003-1444-4684
SPIN-код: 6023-5441

д-р биол. наук, доцент

Россия, Сыктывкар

Евгений Рафаилович Бойко

Институт физиологии Коми научного центра Уральского отделения Российской академии наук Федерального государственного бюджетного учреждения науки Федерального исследовательского центра «Коми научный центр Уральского отделения Российской академии наук»

Email: boiko60@inbox.ru
ORCID iD: 0000-0002-8027-898X
SPIN-код: 5402-8176

д-р мед. наук, профессор

Россия, Сыктывкар

Список литературы

  1. Lazovic B, Mazic S, Suzic-Lazic J, et al. Respiratory adaptations in different types of sport. Eur Rev Med Pharmacol Sci. 2015;19(12):2269–2274.
  2. Durmic T, Lazovic Popovic B, Zlatkovic Svenda M, et al. The training type influence on male elite athletes' ventilatory function. BMJ Open Sport Exerc Med. 2017;3(1):e000240. doi: 10.1136/bmjsem-2017-000240
  3. Bernhardsen GP, Stang J, Halvorsen T, Stensrud T. Differences in lung function, bronchial hyperresponsiveness and respiratory health between elite athletes competing in different sports. Eur J Sport Sci. 2023;23(8):1480–1489. doi: 10.1080/17461391.2022.2113144
  4. Rubini A, Rizzato A, Fava S, et al. Spirometry improvement after muscular exercise in elite swimmers. J Sports Med Phys Fitness. 2017;57(12):1676–1679. doi: 10.23736/S0022-4707.16.06780-3
  5. Tsvetkova-Gaberska M, Kozhuharov M, Ganeva M, et al. The effect of respiratory muscle training on young track-and-field athletes. Journal of Physical Education and Sport. 2023;23(3):730–737. doi: 10.7752/jpes.2023.03090
  6. Xavier DM, Miranda JP, Figueiredo PHS, Lima VP. The effectiveness of respiratory muscular training in athletes: A systematic review and meta-analysis. J Bodyw Mov Ther. 2025;42:777–792. doi: 10.1016/j.jbmt.2025.01.010
  7. Couto M, Kurowski M, Moreira A, et al. Mechanisms of exercise-induced bronchoconstriction in athletes: Current perspectives and future challenges. Allergy. 2018;73(1):8–16. doi: 10.1111/all.13224
  8. Pigakis KM, Stavrou VT, Pantazopoulos I, et al. Exercise-induced bronchospasm in elite athletes. Cureus. 2022;14(1):e20898. doi: 10.7759/cureus.20898
  9. Ora J, De Marco P, Gabriele M, et al. Exercise-induced asthma: managing respiratory issues in athletes. J Funct Morphol Kinesiol. 2024;9(1):15. doi: 10.3390/jfmk9010015
  10. Couto M, Stang J, Horta L, et al. Two distinct phenotypes of asthma in elite athletes identified by latent class analysis. J Asthma. 2015;52(9):897–904. doi: 10.3109/02770903.2015.1067321
  11. Price OJ, Hull JH, Backer V, et al. The impact of exercise-induced bronchoconstriction on athletic performance: a systematic review. Sports Med. 2014;44(12):1749–1761. doi: 10.1007/s40279-014-0238-y
  12. Varlamova NG, Boiko ER. Volumetric characteristics of the external respiration function in ski racers in the annual cycle. Tomsk State University Journal of Biology. 2021;(55):77–96. doi: 10.17223/19988591/55/5 EDN: XEKNFV
  13. Gudkov AB, Popova ON, Efimova NV, et al. Seasonal functional organization of the external respiration system in young people in the Arctic zone of the Russian Federation. Journal of Medical and Biological Research. 2023;11(3):367–372. doi: 10.37482/2687-1491-Z157 EDN: LRFCSE
  14. Durmic T, Lazovic B, Djelic M, et al. Sport-specific influences on respiratory patterns in elite athletes. J Bras Pneumol. 2015;41(6):516–522. doi: 10.1590/S1806-37562015000000050
  15. Chernyak AV, Neklyudova GV, Naumenko ZhK, Pashkova TL. Lung function in athletes involved in skiing and speed skating. Pulmonologiya. 2019;29(1):62–69. doi: 10.18093/0869-0189-2019-29-1-62-69 EDN: XKSYLG
  16. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312
  17. Thomsen RS, Rasmussen RS, Madsen AC, et al. Standardised lung function metrics in healthy athletes. Scand J Clin Lab Invest. 2025;85(1):20–27. doi: 10.1080/00365513.2025.2456947
  18. Schoene RB, Giboney K, Schimmel C, et al. Spirometry and airway reactivity in elite track and field athletes. Clin J Sport Med. 1997;7(4):257–261. doi: 10.1097/00042752-199710000-00003
  19. Nifontova OL, Setyaeva NN, Konkov VZ, Konkova KS. Functional capabilities of respiratory system of the sportsmen who are domiciled in the North. Bulletin of the Medical Institute 'REAVIZ: Rehabilitation, Doctor, and Health'. 2015;(4):75–78. EDN: VJIGKZ
  20. Hackett DA. Lung function and respiratory muscle adaptations of endurance- and strength-trained males. Sports (Basel). 2020;8(12): 160. doi: 10.3390/sports8120160
  21. Segizbaeva MO, Aleksandrova NP. Adaptive changes of the ventilatory function in athletes with different training type. Hum Physiol. 2021;47(5):551–557. doi: 10.1134/S0362119721050108
  22. Ozmen T, Gunes GY, Ucar I, et al. Effect of respiratory muscle training on pulmonary function and aerobic endurance in soccer players. J Sports Med Phys Fitness. 2017;57(5):507–513. doi: 10.23736/S0022-4707.16.06283-6
  23. Peters CM, Dempsey JA, Hopkins SR, Sheel AW. Is the lung built for exercise? Advances and unresolved questions. Med Sci Sports Exerc. 2023;55(12):2143–2159. doi: 10.1249/MSS.0000000000003255
  24. Komici K, D'Amico F, Verderosa S, et al. Impact of body composition parameters on lung function in athletes. Nutrients. 2022;14(18):3844. doi: 10.3390/nu14183844
  25. Varlamova NG, Parshukova OI, Kudinova AK, Boyko ER. Dynamic characteristics of external respiration function in cross-country skiers in the annual cycle. Journal of Medical and Biological Research. 2023;11(1):5–13. doi: 10.37482/2687-1491-Z124 EDN: XILQPA
  26. Kim TH, Han JK, Lee JY, Choi YC. The effect of polarized training on the athletic performance of male and female cross-country skiers during the general preparation period. Healthcare. 2021;9(7):851. doi: 10.3390/healthcare9070851
  27. Talaminos Barroso A, Márquez Martín E, Roa Romero LM, Ortega Ruiz F. Factors affecting lung function: a review of the literature. Arch Bronconeumol (Engl Ed). 2018;54(6):327–332. doi: 10.1016/j.arbres.2018.01.030
  28. Kocahan T, Akinoğlu B, Hasanoğlu A. Effect of intestinal parasites on anaerobic performance and muscle strength in athletes. Medical Journal of Islamic World Academy of Sciences. 2019;27(1):17–24. doi: 10.5505/ias.2019.89847
  29. Rutkovskiy AV, Koinosov AP, Durygina GG. Dynamics of spirometry indicators and maximum oxygen consumption in athletes of cyclical winter sports in the natural climatic conditions of the Middle Ob region. The Scientific and Practical Journal of Medicine. 2019;(3):66–71. doi: 10.25017/2306-1367-21-3-66-71 EDN: FXBOIY
  30. Hancox RJ, Rasmussen F. Does physical fitness enhance lung function in children and young adults? Eur Respir J. 2018;51(2):1701374. doi: 10.1183/13993003.01374-2017
  31. Agusti A, Faner R. Lung function trajectories in health and disease. Lancet Respir Med. 2019;7(4):358–364. doi: 10.1016/S2213-2600(18)30529-0
  32. Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med. 2017;12:3. doi: 10.1186/s40248-017-0084-5
  33. Ebert LA, Sashenkov SL, Kolupaev VA. Dynamics of indicators of respiratory and circulatory systems in athletes with anaerobic and aerobic orientation of the training process by seasons. Proceedings of the Chelyabinsk Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2005;(2):139–144. (In Russ.) EDN: HRUKDR
  34. Kippelen P, Caillaud C, Robert E, et al. Effect of endurance training on lung function: a one year study. Br J Sports Med. 2005;39(9):617–621. doi: 10.1136/bjsm.2004.014464
  35. Gudkov AB, Manuilov IV, Torshin VI, et al. Seasonal changes of external respiratory parameters in skiers of mass categories in the conditions of Russian North. Ekologiya cheloveka (Human Ecology). 2016;23(7):31–36. doi: 10.33396/1728-0869-2016-7-31-36 EDN: WGNCFB
  36. Kennedy MD, Davidson WJ, Wong LE, et al. Airway inflammation, cough and athlete quality of life in elite female cross-country skiers: A longitudinal study. Scand J Med Sci Sports. 2016;26(7):835–842. doi: 10.1111/sms.12527
  37. Varlamova NG, Boyko ER. Features of external breathing function among the northerners in the annual cycle. Marine Medicine. 2017;3(3):43–49. doi: 10.22328/2413-5747-2017-3-3-43-49 EDN: ZMNTJL
  38. Degteva GN. Erythron condition in inhabitants of Northern territories. Ekologiya cheloveka (Human Ecology). 2004;(6):53–57. EDN: HRTLOV
  39. Velichkovsky BT. Causes and mechanisms of decreased oxygen utilization coefficient in human lungs in the extreme North. Biosfera. 2009;1(2):213–217. EDN: QZOGHL
  40. Solonin YuG, Boyko ER. Medical and physiological aspects of vital activity in the Arctic. Arctic: Ecology and Economy. 2015;(1):70–75. EDN: TUUTMT
  41. Nagibovich OA, Ukhovsky DM, Zhekalov AN, et al. Mechanisms of hypoxia in Arctic zone of Russian Federation. Bulletin of the Russian Military Medical Academy. 2016;(2):202–205. EDN: WDCIQD
  42. Nagornev SN, Bobrovnitsky IP, Yudin SM, et al. Mechanisms of adverse effects natural and geographical factors of the arctic zone on human health: metabolic and pathophysiological aspects. Russian Journal of Rehabilitation Medicine. 2019;(2):4–30. EDN: UQFTZN
  43. Popova ON, GudkovАB. Morphofunctional features of northerners respiratory system. Ekologiya cheloveka (Human Ecology). 2009;(2):53–58. EDN: GLSRZR
  44. Stepanov AS, Koinosov AP. Physiological changes in the external respiratory system and oxygen-transportation functions of athletes’s blood in the North conditions. Literature review. The Scientific and Practical Journal of Medicine. 2021;(2):25–31. doi: 10.25017/2306-1367-2021-28-2-25-31 EDN: PJLEDD
  45. Popova ОN, Glebova NA, Gudkov АB. Compensatory-adaptive change of external respiration system in Far North residents. Ekologiya cheloveka (Human Ecology). 2008;(10):31–33. EDN: JUREFJ
  46. Tarakanova TA, Averyanova IV, Vdovenko SI. Features of external respiration and thermal profile of Magadan cross-country skiers. Human. Sport. Medicine. 2022;22(S2):14–21. doi: 10.14529/hsm22s202 EDN: KOCTNI
  47. Lutsenko MT, Pirogov AB. Chronic respirato dieases in conditions of North Russia. Fundamental Research. 2012;(4-1):74–79. EDN: PAZFNV
  48. Kennedy MD, Lenz E, Niedermeier M, Faulhaber M. Are respiratory responses to cold air exercise different in females compared to males? implications for exercise in cold air environments. Int J Environ Res Public Health. 2020;17(18):6662. doi: 10.3390/ijerph17186662
  49. Varlamova NG, Rogachevskaya OV, Bojko ER. External respiratory function in youth and girls in heat and cold. Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences. 2014;(2):50–54. EDN: SIRTPR
  50. Kim LB. Influence of polar time record on the oxygen transportation function of blood of northerners of various age. Arctic and North. 2014;(17):150–162. EDN: TCRGSR
  51. Maximov AL, Golubev VN, Nosov VN. Approaches to assessment of the regional norm of response and adaptation of human physiological systems in the North. Vestnik of the Far East branch of the Russian Academy of Sciences. 2007;(6):56–64. EDN: IYPZDT
  52. Shishkin GS, Ustuzaninova NV. Respiration at low temperatures conditions. Bulletin Physiology and Pathology of Respiration. 2013;(50):9–15. EDN: RPTHCJ
  53. Maximov AL, Vdovenko SI. Lung function state in the service age male residents of Anadyr and Magadan cities. Bulletin Physiology and Pathology of Respiration. 2016;(60):39–44. doi: 10.12737/20051 EDN: WDMVUL
  54. Averyanova IV, Vdovenko SI. The dynamics of gas analysis parameters in young males of the Magadan region from different generations of caucasian migrants and adaptants. Zhurnal evolyutsionnoi Biokhimii i Fiziologii. 2019;55(6):407–413. doi: 10.1134/S004445291904003X EDN: NJYBGX
  55. Van Meerbeke SW, McCarty M, Petrov AA, Schonffeldt-Guerrero P. The Impact of climate, aeroallergens, pollution, and altitude on exercise-induced bronchoconstriction. Immunol Allergy Clin North Am. 2025;45(1):77–88. doi: 10.1016/j.iac.2024.09.004
  56. Dominelli PB, Sheel AW. The pulmonary physiology of exercise. Adv Physiol Educ. 2024;48(2):238–251. doi: 10.1152/advan.00067.2023
  57. Sue-Chu M. Winter sports athletes: long-term effects of cold air exposure. Br J Sports Med. 2012;46(6):397–401. doi: 10.1136/bjsports-2011-090822
  58. Selge C, Thomas S, Nowak D, et al. Asthma prevalence in German Olympic athletes: A comparison of winter and summer sport disciplines. Respir Med. 2016;118:15–21. doi: 10.1016/j.rmed.2016.07.008
  59. Price OJ, Sewry N, Schwellnus M, et al. Prevalence of lower airway dysfunction in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus group on ‘acute respiratory illness in the athlete’. Br J Sports Med. 2022;56:213–222. doi: 10.1136/bjsports-2021-104601
  60. Turmel J, Poirier P, Bougault V, et al. Cardiorespiratory screening in elite endurance sports athletes: the Quebec study. Phys Sportsmed. 2012;40(3):55–65. doi: 10.3810/psm.2012.09.1982
  61. Weiler JM, Brannan JD, Randolph CC, et al. Exercise-induced bronchoconstriction update-2016. J Allergy Clin Immunol. 2016;138(5): 1292–1295.e36. doi: 10.1016/j.jaci.2016.05.029
  62. Zeiger JS, Weiler JM. Special considerations and perspectives for exercise-induced bronchoconstriction (EIB) in olympic and other elite athletes. J Allergy Clin Immunol Pract. 2020;8(7):2194–2201. doi: 10.1016/j.jaip.2020.01.041
  63. Parsons JP, Hallstrand TS, Mastronarde JG, et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am J Respir Crit Care Med. 2013;187(9):1016–1027. doi: 10.1164/rccm.201303-0437ST
  64. Klain A, Giovannini M, Pecoraro L, et al. Exercise-induced bronchoconstriction, allergy and sports in children. Ital J Pediatr. 2024;50(1):47. doi: 10.1186/s13052-024-01594-0
  65. Anderson SD, Kippelen P. Stimulus and mechanisms of exercise-induced bronchoconstriction. Breathe. 2010;7(1):25–33. doi: 10.1183/18106838.0701.025
  66. Stang J, Stensrud T, Mowinckel P, Carlsen KH. Parasympathetic activity and bronchial hyperresponsiveness in athletes. Med Sci Sports Exerc. 2016;48(11):2100–2107. doi: 10.1249/MSS.0000000000001008
  67. Chernyak AV, Chernyak MV. Exercise-induced bronchospasm in athletes. Practical Pulmonology. 2018;(2):8–15. EDN: YLAHGH
  68. Weiss P, Rundell KW. Imitators of exercise-induced bronchoconstriction. Allergy Asthma Clin Immunol. 2009;5(1):7. doi: 10.1186/1710-1492-5-7
  69. Bussotti M, Di Marco S, Marchese G. Respiratory disorders in endurance athletes — how much do they really have to endure? Open Access J Sports Med. 2014;5:47–63. doi: 10.2147/OAJSM.S57828
  70. Atchley TJ, Smith DM. Exercise-induced bronchoconstriction in elite or endurance athletes: Pathogenesis and diagnostic considerations. Ann Allergy Asthma Immunol. 2020;125(1):47–54. doi: 10.1016/j.anai.2020.01.023
  71. Fitch KD. An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br J Sports Med. 2012;46(6):413–416. doi: 10.1136/bjsports-2011-090814
  72. Karjalainen EM, Laitinen A, Sue-Chu M, et al. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med. 2000;161(6):2086–2091. doi: 10.1164/ajrccm.161.6.9907025
  73. Helenius I, Rytilä P, Sarna S, et al. Effect of continuing or finishing high-level sports on airway inflammation, bronchial hyperresponsiveness, and asthma: a 5-year prospective follow-up study of 42 highly trained swimmers. J Allergy Clin Immunol. 2002;109(6):962–968. doi: 10.1067/mai.2002.124769a
  74. Greiwe J, Cooke A, Nanda A, et al. Work group report: perspectives in diagnosis and management of exercise-induced bronchoconstriction in athletes. J Allergy Clin Immunol Pract. 2020;8(8):2542–2555. doi: 10.1016/j.jaip.2020.05.020
  75. Dickinson J, Gowers W, Sturridge S, et al. Fractional exhaled nitric oxide in the assessment of exercise-induced bronchoconstriction: A multicenter retrospective analysis of UK-based athletes. Scand J Med Sci Sports. 2023;33(7):1221–1230. doi: 10.1111/sms.14367
  76. Petek BJ, Gustus SK, Wasfy MM. Cardiopulmonary exercise testing in athletes: expect the unexpected. Curr Treat Options Cardiovasc Med. 2021;23(7):49. doi: 10.1007/s11936-021-00928-z
  77. Stickland MK, Butcher SJ, Marciniuk DD, Bhutani M. Assessing exercise limitation using cardiopulmonary exercise testing. Pulm Med. 2012;2012:824091. doi: 10.1155/2012/824091
  78. McKenzie DC. Respiratory physiology: adaptations to high-level exercise. Br J Sports Med. 2012;46(6):381–384. doi: 10.1136/bjsports-2011-090824
  79. Dempsey JA. Respiratory determinants of exercise limitation: focus on phrenic afferents and the lung vasculature. Clin Chest Med. 2019;40(2):331–342. doi: 10.1016/j.ccm.2019.02.002
  80. Dempsey JA, La Gerche A, Hull JH. Is the healthy respiratory system built just right, overbuilt, or underbuilt to meet the demands imposed by exercise? J Appl Physiol (1985). 2020;129(6):1235–1256. doi: 10.1152/japplphysiol.00444.2020
  81. Mackała K, Kurzaj M, Okrzymowska P, et al. The effect of respiratory muscle training on the pulmonary function, lung ventilation, and endurance performance of young soccer players. Int J Environ Res Public Health. 2019;17(1):234. doi: 10.3390/ijerph17010234
  82. Guazzi M, Adams V, Conraads V, et al. EACPR/AHA scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–2274. doi: 10.1161/CIR.0b013e31826fb946
  83. Pritchard A, Burns P, Correia J, et al. ARTP statement on cardiopulmonary exercise testing 2021. BMJ Open Respir Res. 2021;8(1):e001121. doi: 10.1136/bmjresp-2021-001121
  84. Fatemi R, Ghanbarzadeh M. Relationship between airway resistance indices and maximal oxygen uptake in young adults. Journal of Human Kinetics. 2009;22(1):29–34. doi: 10.2478/v10078-009-0020-7
  85. Rasch-Halvorsen Ø, Hassel E, Langhammer A, et al. The association between dynamic lung volume and peak oxygen uptake in a healthy general population: the HUNT study. BMC Pulm Med. 2019;19(1):2. doi: 10.1186/s12890-018-0762-x
  86. McNeill J, Chernofsky A, Nayor M, et al. The association of lung function and pulmonary vasculature volume with cardiorespiratory fitness in the community. Eur Respir J. 2022;60(2):2101821. doi: 10.1183/13993003.01821-2021
  87. Shamsutdinova ME, Miroshnichenko IV. Features of external men respiration parameters with different levels of physical performance and stamina. Vestnik of the Orenburg State University. 2016;(11):75–79. EDN: XUXITV
  88. Mohammadizadeh MA, Ghanbarzadeh M, Habibi A, et al. The effect of high intensity interval exercise in high/low temperatures on exercise-induced bronchoconstriction (EIB) in trained adolescent males. Tanaffos. 2013;12(3):29–43.
  89. Dominelli PB, Archiza B, Ramsook AH, et al. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp Physiol. 2017;102(11):1535–1547. doi: 10.1113/EP086566
  90. Wüthrich TU, Notter DA, Spengler CM. Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigue-induced excess respiratory drive. Exp Physiol. 2013;98(12):1705–1717. doi: 10.1113/expphysiol.2013.073635
  91. Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161–173. doi: 10.1113/jphysiol.2007.141838
  92. Witt JD, Guenette JA, Rupert JL, et al. Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J Physiol. 2007;584(Pt 3):1019–1028. doi: 10.1113/jphysiol.2007.140855
  93. Oueslati F, Berriri A, Boone J, Ahmaidi S. Respiratory muscle strength is decreased after maximal incremental exercise in trained runners and cyclists. Respir Physiol Neurobiol. 2018;248:25–30. doi: 10.1016/j.resp.2017.11.005
  94. Deliceoglu G, Kabak B, Çakır VO, et al. Respiratory muscle strength as a predictor of VO2max and aerobic endurance in competitive athletes. Appl Sci. 2024;14(19):8976. doi: 10.3390/app14198976
  95. Shei RJ. Recent advancements in our understanding of the ergogenic effect of respiratory muscle training in healthy humans: a systematic review. J Strength Cond Res. 2018;32(9):2665–2676. doi: 10.1519/JSC.0000000000002730
  96. Çelik Z, Güzel NA, Allahverdiyeva S, et al. Effects of simultaneous aerobic and inspiratory muscle training on diaphragm function, respiratory muscle strength, endurance, and fatigue index: randomized-controlled trial. Eur J Appl Physiol. 2025;125(12):3769–3783. doi: 10.1007/s00421-025-05868-1
  97. Klusiewicz A, Starczewski M, Sadowska D, Ładyga M. Effect of high- and low-resistance inspiratory muscle training on physiological response to exercise in cross-country skiers. J Sports Med Phys Fitness. 2019;59(7):1156–1161. doi: 10.23736/s0022-4707.18.09120-x
  98. Kowalski T, Granda D, Klusiewicz A. Practical application of respiratory muscle training in endurance sports. Strength & Conditioning Journal. 2024;46(6):686–695. doi: 10.1519/SSC.0000000000000842
  99. Vanyushin YuS, Elistratov DE, Ishmukhametova NF. Functional state of athletes during testing loads. Russian Journal of Physical Education and Sport. 2020;(1):152–157. doi: 10.14526/2070-4798-2020-15-1-152-157 EDN: GIOAOK
  100. Kowalski T, Klusiewicz A, Rębiś K, et al. Comparative study of different respiratory muscle training methods: effects on cardiopulmonary indices and athletic performance in elite short-track speedskaters. Life (Basel). 2024;14(9):1159. doi: 10.3390/life14091159
  101. Rundell KW, Spiering BA, Judelson DA, Wilson MH. Bronchoconstriction during cross-country skiing: is there really a refractory period? Med Sci Sports Exerc. 2003;35(1):18–26. doi: 10.1097/00005768-200301000-00004
  102. Koch S, MacInnis MJ, Sporer BC, et al. Inhaled salbutamol does not affect athletic performance in asthmatic and non-asthmatic cyclists. Br J Sports Med. 2015;49(q):51–55. doi: 10.1136/bjsports-2013-092706
  103. Lemminger AK, Jessen S, Habib S, et al. Effect of beta2-adrenergic agonist and resistance training on maximal oxygen uptake and muscle oxidative enzymes in men. Scand J Med Sci Sports. 2019;29(12):1881–1891. doi: 10.1111/sms.13544
  104. Jeppesen JS, Jessen S, Thomassen M, et al. Inhaled beta2-agonist, formoterol, enhances intense exercise performance, and sprint ability in elite cyclists. Scand J Med Sci Sports. 2024;34(1):e14500. doi: 10.1111/sms.14500
  105. Eckerström F, Rex CE, Maagaard M, et al. Exercise performance after salbutamol inhalation in non-asthmatic, non-athlete individuals: a randomised, controlled, cross-over trial. BMJ Open Sport Exerc Med. 2018;4(1):e000397. doi: 10.1136/bmjsem-2018-000397
  106. Jessen S, Lemminger A, Backer V, et al. Inhaled formoterol impairs aerobic exercise capacity in endurance-trained individuals: a randomised controlled trial. ERJ Open Res. 2023;9(2):00643–2022. doi: 10.1183/23120541.00643-2022
  107. Barron A, Francis DP, Mayet J, et al. Oxygen uptake efficiency slope and breathing reserve, not anaerobic threshold, discriminate between patients with cardiovascular disease over chronic obstructive pulmonary disease. JACC Heart Fail. 2016;4(4):252–261. doi: 10.1016/j.jchf.2015.11.003
  108. Staes M, Gyselinck I, Goetschalckx K, et al. Identifying limitations to exercise with incremental cardiopulmonary exercise testing: a scoping review. Eur Respir Rev. 2024;33(173):240010. doi: 10.1183/16000617.0010-2024
  109. Petek BJ, Tso JV, Churchill TW, et al. Normative cardiopulmonary exercise data for endurance athletes: the Cardiopulmonary Health and Endurance Exercise Registry (CHEER). Eur J Prev Cardiol. 2022;29(3):536–544. doi: 10.1093/eurjpc/zwab150
  110. Lopes TR, de Oliveira DM, Amoroso de Lima LA, Silva BM. Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve. Respir Physiol Neurobiol. 2025;331:104350. doi: 10.1016/j.resp.2024.104350
  111. Opina MTD, Brinkley TE, Gordon M, et al. Association of breathing reserve at peak exercise with body composition and physical function in older adults with obesity. J Gerontol A Biol Sci Med Sci. 2019;74(12):1973–1979. doi: 10.1093/gerona/gly276
  112. Shen T, Wang Y, Li J, et al. Predictive threshold value of the breathing reserve for the decline in cardiorespiratory fitness among the healthy middle-aged population. J Cardiovasc Dev Dis. 2025;12(3):85. doi: 10.3390/jcdd12030085
  113. Milani M, Milani JGPOM, Machado FVC, et al. Revisiting the peak breathing reserve < 15% criterion to indicate ventilatory limitation to treadmill incremental cardiopulmonary exercise testing in men and women aged 20 to 80 years. European Journal of Preventive Cardiology. 2024;31(1):zwae175.240. doi: 10.1093/eurjpc/zwae175.240 EDN: RJMADO
  114. Pigakis KM, Stavrou VT, Kontopodi AK, et al. Impact of isolated exercise-induced small airway dysfunction on exercise performance in professional male cyclists. Sports (Basel). 2024;12(4):112. doi: 10.3390/sports12040112

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2026

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).