Modern scientific and methodological approaches to monitoring water bodies and wastewater: a review

Cover Page

Cite item

Full Text

Abstract

This review of scientific and methodological approaches to monitoring water and wastewater was conducted to address the issues of environmental safety of water, population access to high-quality drinking water, and wastewater as a major anthropogenic pollutant. The scientific data search was performed in the PubMed biomedical database, the Russian scientific electronic library eLIBRARY.RU, and the official websites of scientific journals with thematic sections on the subject. The search included publications from 15 years. Despite numerous studies demonstrating the advantages of automated monitoring systems—which, while costly, enable real-time control of water bodies—state monitoring of water quality still relies on traditional methods. These are characterized by complexity, high maintenance costs of laboratory equipment, the use of chemical reagents, longer testing times, and limited applicability for on-site and real-time monitoring. Under these conditions, a unified automated system for monitoring the ecological and hygienic status of aquatic environments and wastewater treatment would considerably improve water body protection. This would ensure the supply of safe drinking water to the population and the optimal use of water in health resorts and recreational zones.

Legislative action is required to establish a unified, integrated approach that enables real-time identification of water pollution sources, locations, and levels, as well as mapping of the ecological and hygienic status of water bodies.

About the authors

Olga V. Kiyok

Kuban State Medical University

Author for correspondence.
Email: olga.kiek@mail.ru
ORCID iD: 0000-0003-0900-6313
SPIN-code: 5634-9234

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063

Andrey N. Redko

Kuban State Medical University

Email: redko2005@mail.ru
ORCID iD: 0000-0002-3454-1599
SPIN-code: 5517-3692

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063

Ella Yu. Enina

Kuban State Medical University

Email: ella14081993@yandex.ru
ORCID iD: 0000-0002-4466-7427
SPIN-code: 7899-3343
Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063

Anna S. Krupoder

Kuban State Medical University

Email: anya.krupoder@mail.ru
ORCID iD: 0000-0003-3470-8923
SPIN-code: 1425-6166
Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063

Alexander P. Bogdan

Kuban State Medical University

Email: BogdanAP@ksma.ru
ORCID iD: 0000-0002-1786-6906
SPIN-code: 2471-9592

MD, Cand. Sci. (Medicine)

Russian Federation, 4 Mitrofan Sedin st, Krasnodar, 350063

References

  1. Panarin VM, Maslova AA, Ryleeva EM, Savinkova SA. Autonomous system of surface water bodies monitoring for real time. Ecology and Industry of Russia. 2022;26(4):50–55. doi: 10.18412/1816-0395-2022-3-50-55 EDN: ITCDNU
  2. Patent RUS № 2818532 C1/ 02.05.24. Bull. № 13. Panarin VM, Ryleeva EM, Sergeeva EV, Magradze MD. Automated system for monitoring water pollution with effluents of industrial enterprises. Available from: https://www.elibrary.ru/item.asp?id=67269456. EDN: PIMYHG
  3. Patent RUS № 2521246 C1/ 27.06.14. Bull. № 18. Avandeeva OP, Barenbojm GM, Borisov VM, et al. Submersible complex of environmental monitoring of water bodies. Available from: https://www.elibrary.ru/item.asp?id=37449221. EDN: ZFPQBF
  4. Patent RUS № 2499248 C1/ 20.11.2013 Bull. № 32. Abramov OI, Barenbojm GM, Borisov VM, et al. Complex of environmental monitoring of water facilities. Available from: https://www.elibrary.ru/item.asp?id=37519578. EDN: VUHWVC
  5. Shiryaeva MA, Naumenko NO, Karpenko NP. Innovative hydrological monitoring technologies for water bodies quality prognosing. Occupational Health and Human Ecology. 2024;(2):175–190. doi: 10.24412/2411-3794-2024-10212 EDN: PIBWBY
  6. Schastlivtsev EL, Yukina NI, Bykov AA. Analysis and assessment of water quality in the mining region using information technology. Mining Informational and Analytical Bulletin (Scientific and Technical Journal). 2017;(S23):580–587. doi: 10.25018/0236-1493-2017-10-23-580-587 EDN: ZWSTQT
  7. Markina TA, Bobyrev SV, Tikhomirova EI, Nikolayeva EA. Improving the system of ecological monitoring of springs in natural park «Kumysnaya Polyana» in Saratov city on the basis of geoinformation modeling. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences. 2016;18(2-3):766–770. EDN: XUXRQF
  8. Mkrtchyan FA, Soldatov VYu, Mkrtchyan MA. Expert system for automating hydrophysical studies for the purpose of adaptive identification of water environment parameters in the optical range. Problems of Environment and Natural Resources. 2024;(6):129–144. doi: 10.36535/0235-5019-2024-06-4 EDN: NTXDHF
  9. Bergua JF, Hu L, Fuentes-Chust C, et al. Lateral flow device for water fecal pollution assessment: from troubleshooting of its microfluidics using bioluminescence to colorimetric monitoring of generic Escherichia coli. Lab Chip. 2021;21(12):2417–2426. doi: 10.1039/d1lc00090j
  10. Willis JR, Sivaganesan M, Haugland RA, et al. Performance of NIST SRM® 2917 with 13 recreational water quality monitoring qPCR assays. Water Res. 2022;212:118114. doi: 10.1016/j.watres.2022.118114
  11. Zainurin SN, Wan Ismail WZ, Mahamud SNI, et al. Advancements in monitoring water quality based on various sensing methods: a systematic review. Int J Environ Res Public Health. 2022;19(21):14080. doi: 10.3390/ijerph192114080
  12. Zhang H, Li H, Gao D, Yu H. Source identification of surface water pollution using multivariate statistics combined with physicochemical and socioeconomic parameters. Sci Total Environ. 2022;806(Pt 3):151274. doi: 10.1016/j.scitotenv.2021.151274
  13. Kanoun O, Lazarević-Pašti T, Pašti I, et al. A review of nanocomposite-modified electrochemical sensors for water quality monitoring. Sensors (Basel). 2021;21(12):4131. doi: 10.3390/s21124131
  14. Yaroshenko I, Kirsanov D, Marjanovic M, et al. Real-time water quality monitoring with chemical sensors. Sensors (Basel). 2020;20(12):3432. doi: 10.3390/s20123432
  15. Fashchevskaya TB, Motovilov YuG, Kortunova KV. Modeling the genetic components of the water and chemical runoff of heavy metals in the basin of the Nizhnekamskoe reservoir. Vodnye resursy. 2023;50(4):492–508. doi: 10.31857/S0321059623040077 EDN: QJHXQW
  16. Kalyuzhin AS, Latyshevskaya NI, Bayrakova AL, et al. Geographic information system as a tool of public health monitoring in Rospotrebnadzor and health care structures given the example of sanitary and hygienic surveillance of water resources: analytical review. Public Health and Life Environment — PH&LE. 2024;32(1):36–48. doi: 10.35627/2219-5238/2024-32-1-36-48 EDN: WIGZJG
  17. Manzhina SA, Domashenko YuYe. Russian and foreign practices of monitoring diffusion pollution entering water bodies. Ecology and Water Management. 2020;(3):1–20. doi: 10.31774/2658-7890-2020-3-1-20 EDN: NKUNHC
  18. Slabunova AV, Slabunov VV, Surovikina AP. The current state of the environmental monitoring system in the context of water bodies diffuse pollution assessment. Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems. 2020;(4):103–121. doi: 10.31774/2222-1816-2020-4-103-121 EDN: WOFZZH
  19. Polyanin VO. Conceptual approaches to monitoring diffuse pollution of water bodies. Water Resources. 2020;47(5):785–793. doi: 10.1134/S0097807820050152 EDN: BXZZOK
  20. Yasinsky SV, Kashutina EA, Sidorova MV. The current state of the problem of assessing the characteristics of water bodies diffuse pollution in lowland watersheds. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(1):115–130. doi: 10.31857/S258755662301017X EDN: LVDCSQ
  21. Kirpichnikova NV. Problems of the organization of monitoring of uncontrolled sources of pollution in the catchments of water bodies. In: Monitoring of the state and pollution of the environment. Main results and development paths. Moscow: FGBU IGKE Rosgidrometa i RAN; 2017. Р. 422–424. (In Russ.) EDN: ZNIVST
  22. Sidorova NA, Kalinin VM. Methodological approaches to the monitoring of diffuse pollution of water bodies in the oil fields (for example, deposits uvat group Tyumen region). Regional Environmental Issues. 2010;(6):135–140. EDN: NCSNAD
  23. Prokhorov YuA, Molodyk AD, Lykov IN, et al. Regional network and results of regional monitoring of surface water bodies of the Kaluga region. Regional Environmental Issues. 2021;(3):65–70. doi: 10.24412/1728-323X-2021-3-65-70 EDN: BBGPRD
  24. Kuznetsova KYu. Optimization of methods of state monitoring of water bodies for parasitological indices. Hygiene and Sanitation, Russian journal. 2017;96(5):437–442. doi: 10.18821/0016-9900-2017-96-5-437-442 EDN: YSQDET
  25. Timoshchuk IV, Gorelkina AK, Mikhaylova ES, Utrobina TA. Development of a program for step-by-step monitoring of the state of water bodies in resource-oriented regions and consideration of anthropogenic impact. Ugol' (Russian Coal Journal). 2024;(S11):165–170. doi: 10.18796/0041-5790-2024-11S-165-170 EDN: SKAQCZ
  26. Timofeeva SS. Monitoring of the ecological state of water bodies and identification of sources of their pollution. In: Modern problems of remote sensing of the Earth from space. Moscow; 2018. Р. 119. (In Russ.) EDN: YSSPAD
  27. Meshchaninova EG, Akhromeeva NO. The use of remote sensing materials in monitoring water pollution. In: Basic principles of land management and cadastre development. Novocherkassk; 2022. Р. 109–112. (In Russ.) EDN: ZACVKG
  28. Kochev DV, Emikh NA, Kurganovich KA. Remote monitoring of surface water quality of water bodies as a factor in solving socio-economic problems of the Asia-Pacific region. In: Scientific vector in the Asia-Pacific region: Proceedings of the international scientific and practical conference of young scientists. Cheat; 2022. Р. 35–39. (In Russ.) EDN: UAQLJP
  29. Tolkachev GYu, Korzhenevskiy BI, Kolomiytsev NV. Monitoring of sediment pollution for various water bodies in the upper Volga region. Geoekologiya. Inzheneraya geologiya, gidrogeologiya,geokriologiya. 2023;(3):65–75. doi: 10.31857/S0869780923030116 EDN: WNKUCO
  30. Barabashin TO, Korablina IV, Pavlenko LF, et al. Methodological support of pollution monitoring of the azov and black seas water bodies. Aquatic Bioresources & Environment. 2018;1(3-4):9–27. doi: 10.47921/2619-1024_2018_1_3-4_9 EDN: YSEVVZ
  31. Bagmanov KR, Shamaev DE. Digital solutions for monitoring pollution of bottom sediments of water bodies by heavy metals and petroleum products. In: Proceedings of the XIX All-Russian Conference of Young Scientists, postgraduates and students with international participation "Food Technologies and Biotechnologies". Kazan; 2025. Р. 1113–1125. EDN: FHPVOR
  32. Nemtin GN, Wertgeim AG, Kalinin AI. Organization and maintenance of pollution monitoring in bottom sediments of water bodies of Perm region. In: Proceedings of the international scientific and practical conference "Geography and Region". Perm; 2015. Р. 111–114. EDN: VJLDFP
  33. Minchenоk EE, Pakhomovа NА. Assessment of urban water ecosystems using hydrobiological indicator. Theoretical and Applied Ecology. 2016;(3):48–55. EDN: YGHJQR
  34. Korolevskaya VM, Bashirova MN, Epifanova AA, et al. Evaluation of the quality of water bodies biological and toxicological indicators. Veles. 2016;(6-1):53–57. EDN: WJXJUV
  35. Golovina NA, Romanova NN, Golovin PP, Zdrok АV. Monitoring of the quality and safety of water biological resources from water bodies of the Central Federal District of the Russian Federation. Hygiene and Sanitation, Russian journal. 2020;99(3):246–252. doi: 10.33029/0016-9900-2020-99-3-246-252 EDN: DWCVUF
  36. Shkundina FB, Nikitina OA. Environmental monitoring of organic pollution of water bodies in the city of autotrophic bentos. In: Collection of scientific papers based on the materials of the 6th All-Russian Scientific and Practical conference with international participation "Environmental problems of industrial cities". Saratov; 2013. Р. 316–318. EDN: ZTCVAR
  37. Grekov AN, Vyshkvarkova EV, Ivakin YaA, et al. Biological early warning system for the aquatic environment control. Ecological Systems and Devices. 2024;(1):38–48. doi: 10.25791/esip.1.2024.1425 EDN: VMQPZI
  38. Legin E, Zadorozhnaya O, Khaydukova M, et al. Rapid evaluation of integral quality and safety of surface and waste waters by a multisensor system (electronic tongue). Sensors (Basel). 2019;19(9):2019. doi: 10.3390/s19092019
  39. Epitashvili AV, Fonova SI. The influence of wastewater on natural bodies of water. In: Materials of the eleventh International Innovation Project "School of Ecological and Geological Perspectives". Voronezh; 2024. P. 166–171. EDN: GWMNTR
  40. Ainyulova AE, Bochko TF, Duvanakulov MA. Analysis of the impact of the gas station network of LLC Lukoil-Yugnefteprodukt on environmental components in the city of Krasnodar. In: Proceedings of the II International Scientific and Practical Conference "Actual problems of geoecology and Environmental Management". Krasnodar; 2024. Р. 166–171. EDN: FHOEMY
  41. Zakolyukina AM. Monitoring of flow quality indicators of flow into the Kuban river. In: Collection of materials of the VII International Scientific and Practical Conference of students, postgraduates and young scientists dedicated to the 110th anniversary of the birth of T.V. Alekseeva "Fundamental and applied research of young scientists". Omsk; 2023. Р. 292–295. EDN: NNIOJC
  42. Prozhhorina TI, Nagih ТV. Assessment of the impact of wastewater left-bank treatment facilities on the quality the waters of the Voronezh reservoir. Housing and Utilities Infrastructure. 2018;(3):65–70. EDN: RWTKCF
  43. Ignatenko A.V. Bioecological control of wastewater safety. In: Materials of the reports of the V International Water Forum "Water Resources and Climate". Minsk; 2017. Р. 151–154. EDN: YUJWJR
  44. Ignatenko АV. Method of sample preparation and sewage sludge wastes toxicity biotesting. Proceeedings of BSTU. Issue 2, Chemical Engineering, Biotechnology, Geoecology. 2020;(1):102–107. EDN: NXSMPO
  45. Larin VE, Polyanskaya SA, Rechkalov VV, et al. Comparison of toxicity indices of water samples with excess standards for physico-chemical parameters. Production Quality Control. 2017;(3):50–54. EDN: YFZZNH

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».