寒冷适应对功能性交感溶解中肌肉动脉对肾上腺素反应的影响
- 作者: Ananev V.N.1, Ananev G.V.2, Torshin V.I.3, Ananeva O.V.4
-
隶属关系:
- Institute of Biomedical Problems of the Russian Academy of Sciences
- JSC "Pharmstandard"
- Peoples' Friendship University of Russia
- Tyumen State Medical University
- 期: 卷 31, 编号 4 (2024)
- 页面: 303-313
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/316998
- DOI: https://doi.org/10.17816/humeco633895
- ID: 316998
如何引用文章
全文:
详细
背景 。 肌肉收缩时 , 肌肉动脉的血流量会显著增加 , 这一现象被称为功能性交感溶解。虽然这一现象的机制已有多种解释,但在功能性交感溶解条件下及寒冷适应环境中,肾上腺素对动脉 α- 肾上腺素能受体的药代动力学和药效学作用尚未被定量描述。
研究目的。 评估 30 天寒冷适应对功能性交感溶解中肌肉动脉对肾上腺素反应性的影响。
材料与方法。 实验在四组兔中进行: 1. 对照组 (n=20) ; 2. 功能性交感溶解组 (n=15) ,通过电刺激模拟肌肉收缩; 3. 经历 30 天寒冷适应组 (n=15) ; 4. 经历寒冷适应后模拟功能性交感溶解组 (n=15) 。寒冷适应通过每日在 –10°C 环境中冷却 6 小时建模。实验采用统一方法:在大腿动脉结扎所有吻合支后,通过恒定流量泵对肢体肌肉动脉进行血液灌注,并通过剂量 – 效应关系曲线在 Lineweaver–Burk 双倒数坐标下分析肾上腺素反应性。研究测定最大压力反应 (Pm) 和肾上腺素能受体的敏感性 (1/Km) 。
结果。 功能性交感溶解条件下,肾上腺素对动脉的收缩作用因肾上腺素能受体敏感性降低而减弱 (1/Km 从 1.2±6.7 降至 0.049±0.0016 1/μg·kg, p <0.05) ,但活跃肾上腺素能受体数量无显著变化 (Pm 保持在 222.0±6.7 mmHg) 。寒冷适应条件下,压力型肾上腺素能受体数量显著增加 ( 从 222.0±7.5 mmHg 增至 312.5±11.0 mmHg, p <0.05) ,导致功能性交感溶解作用减弱。然而,肾上腺素能受体的敏感性 (1/Km=0.049±0.0016 1/μg·kg) 与适应前相比无显著变化 ( p >0.05) 。
结论。 寒冷环境中,功能性交感溶解现象依然存在,但较对照组有所减弱。寒冷适应后,由于肾上腺素能受体数量增加,肾上腺素在功能性交感溶解期间引发了更强的动脉收缩反应。这种适应机制可能有助于在寒冷环境中通过增强动脉收缩维持体内热量,提高生存能力。
作者简介
Vladimir N. Ananev
Institute of Biomedical Problems of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: noradrenalin1952@mail.ru
ORCID iD: 0000-0002-4679-6441
SPIN 代码: 1718-8446
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowGeorgy V. Ananev
JSC "Pharmstandard"
Email: gvananiev@pharmstd.ru
ORCID iD: 0009-0005-4287-8430
SPIN 代码: 4845-8340
俄罗斯联邦, Moscow
Vladimir I. Torshin
Peoples' Friendship University of Russia
Email: vtorshin@mail.ru
ORCID iD: 0000-0002-3950-8296
SPIN 代码: 8602-3159
Dr. Sci. (Biology), Professor
俄罗斯联邦, MoscowOlga V. Ananeva
Tyumen State Medical University
Email: olvasan@mail.ru
ORCID iD: 0000-0002-0672-9164
SPIN 代码: 1239-5484
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Tyumen参考
- Aghajanyan NA, Erma kova NV. Ecological portrait of a man in the North. Moscow: KRUK; 1997. (In Russ.)
- Kaznacheev V.P. Modern aspects of adaptation. Novosibirsk: Nauka; 1980. (In Russ.) EDN: RZYABH
- Maslov LN, Vychuzhanina EA. Role of sympatho-adrenomedullar system in adaptation to cold. Russian Journal of Physiology. 2015;101(2):145–162. EDN: THWQIH
- Pastukhov YuF, Khaskin VV. Adrenergic control of thermogenesis during experimental adaptation of animals to cold. Uspekhi fiziologicheskikh nauk. 1979. Vol. 10, N 3. P. 121–144.
- Dulaney CS, Heidorn CE, Singer TJ, McDaniel J. Mechanisms that underlie blood flow regulation at rest and during exercise. Adv Physiol Educ. 2023;47(1):26–36. doi: 10.1152/advan.00180.2022
- Krivoshchekov SG, Leutin VP, Chukhrova MG. Psychophysiological aspects of incomplete adaptation. Novosibirsk; 1998. (In Russ.) EDN: RNGKKD
- Gudkov AB, Tedder YuR, Dyogteva GN. Some features of the physiological reactions of workers’ bodies during the expeditionary-rotational method of labor organization in the Arctic. Fiziologiya Cheloveka. 1996;22(4):137–142. EDN: TYSRVZ
- Kelly KR, Pautz CM, Palombo LJ, et al. Altered sympathoadrenal activity following cold-water diving. J Spec Oper Med. 2023;23(3):74–81. doi: 10.55460/T5CZ-JXVK
- Sun Z, Cade R. Cold-induced hypertension and diuresis. J Therm Biol. 2000;25(1-2):105–109. d oi: 10.1016/s0306-4565(99)00085-6
- Shechtman O, Papanek PE, Fregly M. Reversibility of cold-induced hypertension after removal of rats from cold. Can J Physiol Pharmacol. 1990;68(7):830–835. doi: 10.1139/y90-126
- Hansen AB, Moralez G, Romero SA, et al. Mechanisms of sympathetic restraint in human skeletal muscle during exercise: role of α-adrenergic and nonadrenergic mechanisms. Am J Physiol Heart Circ Physiol. 2020;319(1):H192-H202. d oi: 10.1152/ajpheart.00208.2020
- van der Horst J, Møller S, Kjeldsen SAS, et al. Functional sympatholysis in mouse skeletal muscle involves sarcoplasmic reticulum swelling in arterial smooth muscle cells. Physiol Rep. 2021;9(23):e15133. doi: 10.14814/phy2.15133
- Saltin B, Mortensen SP. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle. J Physiol. 2012. Vol. 590, N 24. P. 6269–6275. d oi: 10.1113/jphysiol.2012.241026
- Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Continuing Educ Anaesthesia Crit Care Pain. 2004. Vol. 4, N 6. P. 185–188. doi: 10.1093/bjaceaccp/mkh050
- Sarelius I, Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms. Acta Physiol (Oxf). 2010;199(4):349–365. doi: 10.1111/j.1748-1716.2010.02129.x
- Remensnyder JP, Mitchell JH, Sarnoff SJ. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962;11:370–380. d oi: 10.1161/01.RES.11.3.370.
- Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2) :549–601. doi: 10.1152/physrev.00035.2013
- Thomas GD, Segal SS. Neural control of muscle blood flow during exercise. J Appl Physiol (1985). 2004;97(2):731–738. doi: 10. 1152/japplphysiol.00076.2004
- Manukhin BN, Ananieva OV, Ananiev VN. Changes of alpha1-adrenergic and muscarinic cholinergic responses of arterial blood pressure in the rabbit during adaptation to cold. Russian Journal of Physiology. 2006;92(3):308–317. EDN: HTGIXV
- Ananev VN, Ananev GV, Ananeva OV. The importance of arterial adrenoceptors in sympatholysis in the regulation of blood flow in working muscles. Human. Sport. Medicine. 2023;23(2):61–68. EDN: ILACTH doi: 10.14529/hsm230208
- Khayutin VM. Vasomotor reflexes. Moscow: Nauka; 1964. (In Russ.)
- Manukhin BN. Physiology of adrenoreceptors. Moscow: Nauka; 1968. (In Russ.)
- Lineweaver H, Burk D. The determination of enzyme dissociation constants. Journal of the American Chemical Society. 1934;56(3 ):658–666. doi: 10.1021/ja01318a036
- Varfolomeev SD, Gurevich KG. Biokinetics. Practical course. Moscow: Fair Press; 1999. EDN: (In Russ.) YLWARF
- Cornish-Bowden E. Fundamentals of enzymatic kinetics. Moscow: Mir; 1979. (In Russ.)
- Sergeev PV, Shimanovsky NL, Petrov VI. Receptors of physiologically active substances. Volgograd: Seven Winds; 1999. (In Russ.) EDN: PFIAIK
- Avdonin PV, Tkachuk VA. Receptors and intracellular calcium. Moscow: Nauka; 1994. (In Russ.)
- Galenko-Yaroshevsky PA, Adzienko LM, Bobrov VA, et al. Pharmacological regulation of vascular tone. Moscow: RAMN; 1999. (In Russ.) EDN: RDSPQF
补充文件
