金属及其氧化物纳米颗粒对实验动物器官元素组成及其蓄积能力的影响评估
- 作者: Obidina I.V.1, Churilov G.I.1, Ivanycheva Y.N.1, Pronina E.M.1, Matua T.I.1, Chernykh I.V.1
-
隶属关系:
- Ryazan State Medical University
- 期: 卷 32, 编号 5 (2025)
- 页面: 334-343
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314593
- DOI: https://doi.org/10.17816/humeco642454
- EDN: https://elibrary.ru/AUCQNQ
- ID: 314593
如何引用文章
详细
论证。纳米技术的快速发展,以及其研究成果在包括农业和医学在内的多个工业领域中的广泛应用,促使人们亟需全面研究超微颗粒物对人类和动物的影响。目前,关于纳米颗粒对器官和组织微量元素组成的影响资料仍较有限。与此同时,考虑到在技术过程中纳米颗粒产量和排放量不断增长,其进入环境后所产生的不同化学性质颗粒的直接和间接作用都应予以重视。
目的。评估铜(Cu)、钴(Co)和氧化铜(CuO)纳米颗粒在胃内给予实验动物后,对其行为反应及肝脏、肾脏和生殖系统中微量元素组成的影响,并研究其在相关器官中的蓄积能力。
材料与方法。实验在ICR系雄性小鼠中进行,将其分为四个变异组,每组6只。各组小鼠每日灌胃一次,连续20天,分别给予蒸馏水(对照组)或含有Cu、Co和CuO纳米颗粒的悬浮液,剂量均为0.02 mg/kg。评估小鼠体重变化动态及焦虑水平(包括有支撑和无支撑直立次数及短时梳理行为发生次数)。实验结束后处死动物,采集肝脏、肾脏及生殖器官,采用能量色散X射线荧光分析法测定其微量元素组成。
结果。所有测试的纳米颗粒均引发动物出现焦虑行为表现:观察到有支撑直立次数增加(接受Co纳米颗粒组),无支撑直立次数减少并伴随梳理行为次数增加(接受Cu和CuO纳米颗粒组)。在同一组别(Cu、CuO)中,观察到小鼠体重较对照组有所下降。对肝脏、肾脏和生殖器官中微量元素水平的分析显示:钾、钙和硫的浓度发生多方向变化,附睾睾丸中氧元素含量升高。未在所检测器官中发现Cu、CuO及Co纳米颗粒的蓄积迹象。由此可见,纳米颗粒的毒性是通过改变器官的微量元素组成而间接实现的,其特点是可被迅速清除。
结论。铜、钴和氧化铜纳米颗粒对实验动物的生理指标和行为表现具有多方向影响,其作用机制为通过改变器官的元素组成间接实现。在所研究的器官中未发现铜、钴及氧化铜纳米颗粒的蓄积。
作者简介
Inna V. Obidina
Ryazan State Medical University
编辑信件的主要联系方式.
Email: inna.obidina@mail.ru
ORCID iD: 0000-0002-7235-6415
SPIN 代码: 8087-7620
Cand. Sci. (Biology); Associate Professor
俄罗斯联邦, RyazanGennady I. Churilov
Ryazan State Medical University
Email: genchurilov@yandex.ru
ORCID iD: 0000-0002-4056-9248
SPIN 代码: 2096-4817
Dr. Sci. (Biology), Professor
俄罗斯联邦, RyazanYulia N. Ivanycheva
Ryazan State Medical University
Email: julnic79@mail.ru
ORCID iD: 0009-0007-6930-7296
SPIN 代码: 1636-3360
Cand. Sci. (Biology), Associate Professor
俄罗斯联邦, RyazanElizaveta M. Pronina
Ryazan State Medical University
Email: pronina.em2002@yandex.ru
俄罗斯联邦, Ryazan
Tamriko I. Matua
Ryazan State Medical University
Email: matua.2001@mail.ru
俄罗斯联邦, Ryazan
Ivan V. Chernykh
Ryazan State Medical University
Email: ivchernykh88@mail.ru
ORCID iD: 0000-0002-5618-7607
SPIN 代码: 5238-6165
Dr. Sci. (Biology), Associate Professor
俄罗斯联邦, Ryazan参考
- Gmoshinski IV, Shipelin VA, Khotimchenko SA. Nanomaterials in food products and their package: comparative analysis of risks and advantages. Health Risk Analysis. 2018;(4):134–142. doi: 10.21668/health.risk/2018.4.16 EDN: YUGSCD
- Vershinina IA, Lebedev SV. Investigation of the responses of the Eisenia fetida worms when copper and zinc nanoparticles are introduced into the habitat. Bulletin of Nizhnevartovsk State University. 2022;(1):45–54. doi: 10.36906/2311-4444/22-1/05 EDN: FYMTIA
- Sutunkova MP, Solovyеva SN, Chernyshov IN, et al. Manifestations of subacute systemic toxicity of lead oxide nanoparticles in rats after an inhalation exposure. Toxicological Review. 2020;(6):3–13. doi: 10.36946/0869-7922-2020-6-3-13 EDN: GPVVHA
- Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
- Chernykh IV, Kopanitsa MA, Shchulkin AV, et al. Evaluation of cytotoxicity of gold glyconanoparticles of human colon adenocarcinoma cells. I.P. Pavlov Russian Medical Biological Herald. 2023;31(2):255–264. doi: 10.17816/PAVL0VJ112525 EDN: BBWWHG
- Sutunkova MP, Minigalieva IA, Privalova LI, et al. Impact of toxicity effects of zinc oxide nanoparticles in rats within acute and subacute experiments. Hygiene and Sanitation. 2021;100(7):704–710. doi: 10.47470/0016-9900-2021-100-7-704-710 EDN: GTJKCC
- Antsiferova AA, Kopaeva MYu, Kochkin VN, Kashkarov PK. Effects of long-term oral administration of silver nanoparticles on the cognitive functions of mammals. Toxicological Review. 2021;29(6):33–38. doi: 10.36946/0869-7922-2021-29-6-33-38 EDN: WASEGZ
- Lutkovskaya YaV, Sizova EA, Kamirova AM. Ultrafine forms of trace elements in the diet of ruminants: impact on productivity and health. The Agrarian Scientific Journal. 2024;(5):96–104. doi: 10.28983/asj.y2024i5pp96-104 EDN: KQORQF
- Onishchenko GG, Tutelyan VA, Gmoshinskiy IV, Khotimchenko SA. Evelopment of the system for nanomaterials and nanotechnology safety in Russian Federation. Hygiene and Sanitation. 2013;92(1):4–11. EDN: PVFGVB
- Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv. 2023;5(10):2674–2723. doi: 10.1039/d2na00534d
- Polishchuk SD, Churilov DG, Churilov GI, et al. Determining the common patterns of nanoparticle effects on physiological and biochemical processes in plants. E3S Web of Conferences. 2023;411:02051. doi: 10.1051/e3sconf/202341102051
- Stepanova IA, Polischuk SD, Churilov DG, et al. Biological activity of cobalt and zinc oxide nanoparticles and their bioaccumulation on the example of vetch. Herald of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2019;(1):62–67. EDN: EQVUFC
- Churilov GI, Obidina IV, Churilov DG, Polishchuk SD. Influence of the size and concentration of metal nanoparticles on their biological activity. Modern Science: Actual Problems of Theory and Practice. 2020;(3):62–69. EDN: KOWNLD
- Churilov GI, Obidina IV, Churilov DG, et al. Comparative toxicological characteristics of cobalt, copper, copper oxide and zinc nanoparticles. Modern Science: Actual Problems of Theory and Practice. 2020;(4):28–34. doi: 10.37882/2223-2966.2020.04.38EDN: ASCFPX
- Stepanova IA. Mineral and lipid metabolism indicators in livestock after administration of metal nanopowders [dissertation]. Ryazan; 2018. 158 p. (In Russ.) EDN: GYKDWE
- Lee IC, Ko JW, Park SH, et al. Comparative toxicity and biodistribution in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part Fibre Toxicol. 2016;13(1):56. doi: 10.1186/s12989-016-0169-x
- Zinkovskaya I, Ivlieva AL, Petritskaya EN, Rogatkin DA. Unexpected reproductive effect of prolonged oral administration of silver nanoparticles in laboratory mice. Ekologiya cheloveka (Human Ecology). 2020;27(10):23–30. doi: 10.33396/1728-0869-2020-10-23-30 EDN: DMCCCS
- Elyasin PA, Zalavina SV, Mashak AN, Skalny AV. Peculiarities of mineral exchange of liver and structure of the mesenterial lymph node of adolescent rats in conditions of lead chronic intoxication. The Siberian Scientific Medical Journal. 2018;38(6):24–28. doi: 10.15372/SSMJ20180604 EDN: YPPDUL
- Apukhtin KV, Shevlyakov AD, Kotova MM, et al. Analyses of rodent grooming and its behavioral microstructure in modern neurobiological studies. Russian Journal of Physiology. 2024;110(6):889–914. doi: 10.31857/S0869813924060022 EDN: BFDDUM
- Pronina IV, Mochalova ES, Efimova YuA, Postnikov PV. Biological functions of cobalt and its toxicology and detection in anti-doping control. Fine Chemical Technologies. 2021;16(4):318–336. doi: 10.32362/2410-6593-2021-16-4-318-336 EDN: SLGLNG
- Sutunkova MP. Toxicological-hygienic criteria and risk management for health impacts of metal-containing nanoparticles [dissertation]. Yekaterinburg; 2019. 317 p. (In Russ.) EDN: RHVLXY
- Zemlyanova MA, Stepankov MS, Ignatova AM. Features of bioaccumulation and toxic effects of copper (II) oxide nanoparticles under the oral route of intake into the body. Toxicological Review. 2021;29(6):47–53. doi: 10.36946/0869-7922-2021-29-6-47-53 EDN: PHYHZY
- Zaytsev VV. Pharmacotoxicological properties and efficacy of cobalt and copper nanoparticle-based compounds in hypomicroelementoses [dissertation]. Astrakhan; 2022. 155 p. (In Russ.) EDN: BFIMNX
- Zelepukin IV. Novel approaches to controlling nanoparticle pharmacokinetics [dissertation]. Moscow; 2021. 109 p. EDN: HIEHCE
- Triboulet S, Aude-Garcia C, Carrière M, et al. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles: proteomic analyses. Mol Cell Proteomics. 2013;12(11):3108–3122. doi: 10.1074/mcp.M112.025205
- Franovskii SYu, Turbinskii VV, Oks EI, Bortnikova SB. Elemental markers of exposure under combined oral introduction of chemical mixtures with prevalent antimony and arsenic into white Wistar rats . Health Risk Analysis. 2019;(3):94–103. doi: 10.21668/health.risk/2019.3.11 EDN: WGXHOB
- Glukhcheva Y, Tinkov AA, Ajsuvakova OP, et al. The impact of perinatal cobalt exposure on iron, copper, manganese, and zinc metabolism in immature ICR mice. Problems of Biological, Medical and Pharmaceutical Chemistry. 2019;22(3):3–8. doi: 10.29296/25877313-2019-03-01 EDN: YWEEZL
- Sizova EA, Miroshnikov SA, Lebedev SV, Glushchenko NN. Effect of multiple doses of nanoparticles copper on the elemental composition of rat liver. Vestnik of the Orenburg State University. 2012;(6):188–190. EDN: PDQWHL
- Akhpolova VO, Brin VB. Calcium exchange and its hormonal regulation. Journal of Fundamental Medicine and Biology. 2017;(2):38–46. EDN: ZHRGCH
- Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. doi: 10.1155/2013/942916
- Sakovets TG, Bogdanov EI. Hypokalemic myoplegia. Kazan Medical Journal. 2013;94(6):933–938. doi: 10.17816/KMJ1822 EDN: RSHIY
- Cremades A, Sanchez-Capelo A, Monserrat A, et al. Potassium deficiency effects on potassium, polyamines and amino acids in mouse tissues. Comp Biochem Physiol A Mol Integr Physiol. 2003;134(3):647–654. doi: 10.1016/s1095-6433(02)00369-0
- Huang CC, Aronstam RS, Chen DR, Huang YW. Oxidative stress and gene expression in lung cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010;24(1):45–55. doi: 10.1016/j.tiv.2009.09.007
- Iskakova SA. Lipid peroxidation in organs of rats after subchronic sulfur vapor exposure. In: The dynamics of scientific research. Ecology. Publishing house Education and Science s.r.o.; 2008.
- Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab. 2007;4:24. doi: 10.1186/1743-7075-4-24
- Min Y, Suminda GGD, Heo Y, et al. Metal-based nanoparticles and their oxidative stress mechanisms. Antioxidants. 2023;12(3):703. doi: 10.3390/antiox12030703
- Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci. 2022;23(8):4153. doi: 10.3390/ijms23084153
- Zaitseva NV, Zemlyanova MA, Stepankov MS, Ignatova AM. Copper (II) oxide nanoparticles toxicity and potential human health hazards. Ekologiya cheloveka (Human Ecology). 2021;28(11):50–57. doi: 10.33396/1728-0869-2021-11-50-57 EDN: BBNUWI
- Zhang H, Wu X, Mehmood K, et al. Intestinal epithelial cell injury induced by copper nanoparticles in piglets. Environ Toxicol Pharmacol. 2017;56:151–156. doi: 10.1016/j.etap.2017.09.010
- Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi: 10.1021/acsnano.9b01383
- Ivlieva AL, Zinkovskaia I, Petriskaya EN, Rogatkin DA. Nanoparticles and nanomaterials as inevitable modern toxic agents. Review. Part 2. Main areas of research on toxicity and techniques to measure a content of nanoparticles in tissues. Ekologiya cheloveka (Human Ecology). 2022;29(3):147–162. doi: 10.17816/humeco100156 EDN: CUXNFJ
- Habas K, Demir E, Guo I, et al. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab Rev. 2021;53(4):604–617. doi: 10.1080/03602532.2021.1917597
补充文件
