室内植物在改善学前教育机构室内空气质量中的作用
- 作者: Chuenko N.F.1, Novikova I.I.1, Lobkis M.A.1, Romanenko S.P.1, Savchenko O.A.1, Shirinskii V.A.2, Gudinova Z.V.2
-
隶属关系:
- Novosibirsk Scientific Research Institute of Hygiene
- Omsk State Medical University
- 期: 卷 32, 编号 2 (2025)
- 页面: 90-99
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314573
- DOI: https://doi.org/10.17816/humeco646321
- EDN: https://elibrary.ru/PNUENT
- ID: 314573
如何引用文章
全文:
详细
论证。在当前条件下,空气环境质量对儿童健康具有重要影响。学龄前教育机构的教育阶段对儿童健康产生显著作用,其状态取决于养育与教学环境是否符合卫生防疫规范及既定的卫生标准。分析俄罗斯和国外的科学研究结果表明,室内空气质量不良、微气候条件欠佳以及二氧化碳的存在,会对儿童的功能状态产生不利影响。这是导致儿童劳动能力下降、脑功能减退以及免疫力降低,从而显著增加其患病风险的原因之一。值得注意的是,二氧化碳(CO2) 浓度目前仍未被纳入规范指标,然而它在儿童临时或长期停留的机构中构成了潜在风险因素。
目的。评估在学前教育机构封闭室内环境中使用室内植物以提升空气质量的效果。
材料与方法。在“Raduga”综合型幼儿园的两个游戏活动室内开展了微气候参数和空气质量的监测工作。在实验组教室内摆放了特定种类的室内植物,这些植物对儿童安全无害,且具有经证实的抗菌活性,并具备净化和气体吸附功能。实验组与对照组均配备了EClerk-Eco-RHTC(俄罗斯新西伯利亚)多功能监测仪,用于持续测量、控制和调节空气中对健康至关重要的参数(温度、相对湿度及CO2浓度),并在超出设定范围时提供警报提示。
结果。在“Raduga”幼儿园开展的室内空气质量评估研究表明,在儿童长期停留的教室内配置推荐的室内植物,在叶面积分别为1.7 和2.5 m2、教室面积为48 m2的条件下,与对照组相比,观察组室内空气中的CO2 浓度分别降低了1.3倍(Kruskal–Wallis检验,p < 0.05)和1.2倍(Kruskal–Wallis检验,p < 0.05),差异具有统计学意义。
结论。提升学前教育机构游戏室空气质量的有效性,取决于所推荐植物的叶面积大小及其在空间中的合理分布,并应考虑其有效作用半径。具有挥发性抑菌、气体吸附和蒸腾功能的室内植物,有助于改善学前教育机构封闭空间内的空气质量,并降低CO2浓度。
作者简介
Natalia F. Chuenko
Novosibirsk Scientific Research Institute of Hygiene
编辑信件的主要联系方式.
Email: natali26.01.1983@yandex.ru
ORCID iD: 0000-0002-1961-3486
SPIN 代码: 9709-3447
俄罗斯联邦, Novosibirsk
Irina I. Novikova
Novosibirsk Scientific Research Institute of Hygiene
Email: novikova_ii@niig.su
ORCID iD: 0000-0003-1105-471X
SPIN 代码: 3773-2898
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, NovosibirskMaria A. Lobkis
Novosibirsk Scientific Research Institute of Hygiene
Email: lobkis_ma@niig.su
ORCID iD: 0000-0002-8483-5229
SPIN 代码: 4387-9425
俄罗斯联邦, Novosibirsk
Sergey P. Romanenko
Novosibirsk Scientific Research Institute of Hygiene
Email: romanenko_sp@niig.su
ORCID iD: 0000-0003-1375-0647
SPIN 代码: 2107-5929
MD, Cand. Sci. (Medicine)
俄罗斯联邦, NovosibirskOleg A. Savchenko
Novosibirsk Scientific Research Institute of Hygiene
Email: savchenko_oa@niig.su
ORCID iD: 0000-0002-7110-7871
SPIN 代码: 1029-6168
Cand. Sci. (Biology)
俄罗斯联邦, NovosibirskVladimir A. Shirinskii
Omsk State Medical University
Email: vash1007@mail.ru
ORCID iD: 0009-0007-1929-2620
SPIN 代码: 3487-6456
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, OmskZhanna V. Gudinova
Omsk State Medical University
Email: gud@list.ru
ORCID iD: 0000-0001-6869-6057
SPIN 代码: 6178-8633
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Omsk参考
- Gritsina OP, Trankovskaya LV, Semaniv EV, Lisetskaya EA. Factors forming the health of modern children and adolescents. Pacific Medical Journal. 2020;(3):19–24. doi: 10.34215/1609-1175-2020-3-19-24 EDN: XHSVOV
- Mikhaylichenko KYu, Nazarov VA, Kondrashova AS, Chizhov AYa. Рarameters of the school environment as a factor that affects the health of pupils. RUDN Journal of Medicine. 2010;(4):342–347. EDN: MWEGHN
- Lobkis MA, Sarychev VV, Sorokina AV, Nazimkin NI. Hygienic significance of microclimate parameters and carbon dioxide content in providing a health-saving learning environment. In: All-Russian Scientific and Practical Conference «Current issues of hygiene and prevention». Novosibirsk; 2024. Р. 68–76. EDN: MUBVCP
- Kuzina AD. On the issue of normalization of microclimate parameters in clean rooms. In: International Scientific and Practical Conference «Modeling and analysis of complex technical and technological systems». Samara; 2018. Р. 74–78. (In Russ.) EDN: YQTNZL
- Gubernskiy YuD, Kalinina NV, Gaponova EB, Banin IM. Rationale for the permissible level of carbon dioxide in indoor air in residential and public buildings with the permanent human presence. Hygiene and Sanitation. 2014;93(6):37–41. EDN: TFANVV
- Mansurov RSh, Gurin MA, Rubel EV. The effect of carbon dioxide concentration on the human body. Universum: Tekhnicheskie Nauki. 2017;(8):20–23. EDN: ZEFMXZ
- Chuenko NF, Novikova II. Method of normalising the chemical composition and relative humidity of indoor air using indoor plants. Journal of New Medical Technologies, Eedition. 2024;18(5):77–83. doi: 10.24412/2075-4094-2024-5-2-3 doi: 10.24412/2075-4094-2024-5-2-3
- Chuenko NF, Novikova II, Lobkis MA, et al. Transpiring, phytoncidal and gas-absorbing properties of indoor plants and their role in improving the air quality in preschool environments. Ekologiya cheloveka (Human Ecology). 2023;30(10):759–769. doi: 10.17816/humeco609574 EDN: LIVXQJ
- Patent RUS № 2823058 / 17.07.24. Byul. №20. Novikova II, Chuenko NF, Lobkis MA, et al. Method of improving air environment of closed rooms using transpiring and gas-absorbing properties of indoor plants. Available from: https://elibrary.ru/download/elibrary_68602146_35238015.PDF (In Russ.) EDN: ULKSLX
- Simoni M, Annesi-Maesano I, Sigsgaard T, et al. School air quality related to dry cough, rhinitis and nasal patency in children. Eur Respir J. 2010;35(4):742–749. doi: 10.1183/09031936.00016309
- Molnar P, Bellander T, Sellsten G, Boman J. Indoor and outdoor concentrations of PM 2.5 trace elements at homes, preschools and schools in Stockholm, Sweden. J Environ Monit. 2007;9(4):348–357. doi: 10.1039/B616858B
- Wolverton BC, McDonald RC, Watkins EA. Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ Bot. 1984;38:224–228. doi: 10.1007/BF02858837
- Hong SH, Hong J, Yu J, Lim Y. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants. Environ Health Toxicol. 2017;32:e2017006. doi: 10.5620/eht. e2017006
- Agarwal P, Sarkar M, Chakraborty B, Banerjee T. Phytoremediation of air pollutants: prospects and challenges. In Phytomanagement of polluted sites. Elsevier; 2019. Р. 221–241. doi: 10.1016/B978-0-12-813912-7.00007-7
- Su Y, Liang H, Zhao S, et al. Removal efficiency and mechanisms of formaldehyde by five species of plants in air-plant-water system. Human and Ecological Risk Assessment: An International Journal. 2019;25(4):1059–1071. doi: 10.1080/10807039.2018.1474432
- Han KT, Ruan LW, Liao LS. Effects of indoor plants on human functions: a systematic review with meta-analyses. Int J Environ Res Public Health. 2022;19(12):7454. doi: 10.3390/ijerph19127454
- Kim HH, Yeo IY, Lee JY. Higher attention capacity after improving indoor air quality by indoor plant placement in elementary school classrooms. The Horticulture Journal. 2020;89(3):319–327. doi: 10.2503/hortj.UTD-110
- Wolverton BC, Douglas WL, Bounds K. A study of interior landscape plants for indoor air pollution abatement. NASA Technical documents; 1989. 300 p.
- Torpy F, Clements N, Pollinger M, et al. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual Atmos Health. 2018;11(2):163–170. doi: 10.1007/s11869-017-0518-4
- Aydogan A, Cerone R. Review of the effects of plants on indoor environments. Indoor and Built Environment. 2021;30(4):442–460. doi: 10.1177/1420326X19900213
- Agafonova VV. Indoor air quality assessment in office buildings. Water Supply and Sanitary Technique. 2019;(3):61–64. EDN: YYORVB
- Volkova NG, Ceshkovskaja EYu. On the need to develop criteria for assessing the quality of the indoor environment, air quality, relative humidity and acoustic effects. In: Fundamental, exploratory and applied research of the Russian academy of architecture and building sciences on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2019. Moscow; 2020. P. 143–151. EDN: IPRKXD
补充文件




