Lack of association between I/D dimorphism in the АСЕ gene and success in a chosen sport
- Authors: Khromov-Borisov N.N., Bondareva E.A.1
-
Affiliations:
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
- Issue: Vol 31, No 11 (2024)
- Pages: 796-806
- Section: REVIEWS
- URL: https://journals.rcsi.science/1728-0869/article/view/314555
- DOI: https://doi.org/10.17816/humeco643363
- EDN: https://elibrary.ru/RJNJCY
- ID: 314555
Cite item
Abstract
BACKGROUND: In recent decades, numerous attempts have been made to identify genes that determine various morphofunctional and psychophysiological traits associated with outstanding athletic performance. One of the first to be studied in sports genetics is the insertion/deletion dimorphism in the angiotensin I–converting enzyme (ACE I/D) gene.
AIM: To evaluate the utility of the ACE gene I/D dimorphism (rs1799752) as a predictive marker of exceptional athletic achievement, based on an analysis of the available scientific sources.
MATERIALS AND METHODS: A total of 60 studies were retrieved using the keywords in PubMed, Google Scholar, and eLIBRARY, of which 47 were excluded from analysis due to the lack of control group data. The final sample included 13,776 individuals (3536 athletes and 10,240 controls).
RESULTS: A statistically significant deviation from Hardy–Weinberg equilibrium was detected in nine cases in the athlete subgroups and in six controls (mid-p < 0.05). In 56 cases, the fixation index (FIS) significantly deviated from zero, indicating either inbreeding, outbreeding, and/or an excessively wide 95% confidence interval—suggesting probable genotyping errors. Meta-analysis was performed using the MetaGenyo online software. The dominant model yielded the most significant findings. However, even in this case, the obtained odds ratios and their 95% confidence intervals were either practically negligible or characterized by excessively wide confidence ranges. In addition to standard pooled effect estimation (odds ratio), 95% prediction intervals were also calculated, which were 0.58 to 1.15.
CONCLUSION: No sport or athletic specialization was identified in which the ACE gene I/D dimorphism could serve as a reliable marker for predicting individual predisposition to high athletic performance.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Nikita N. Khromov-Borisov
Email: nikita.khromovborisov@gmail.com
ORCID iD: 0000-0001-6435-7218
SPIN-code: 1086-2105
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgElvira A. Bondareva
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Author for correspondence.
Email: bondareva.e@gmail.com
ORCID iD: 0000-0003-3321-7575
SPIN-code: 6732-2072
Cand. Sci. (Biology)
Russian Federation, MoscowReferences
- Rankinen T, Fuku N, Wolfarth B, et al. No evidence of a common DNA variant profile specific to world class endurance athletes. PLoS One. 2016;11(1):e0147330. doi: 10.1371/journal.pone.0147330
- Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011;110(5):1160–1170. doi: 10.1152/japplphysiol.00973.2010
- Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature. 1998;393(6682):221–222. doi: 10.1038/30374
- Rivera MA, Wolfarth B, Dionne FT, et al. Three mitochondrial DNA restriction polymorphisms in elite endurance athletes and sedentary controls. Med Sci Sports Exerc. 1998;30(5):687–690. doi: 10.1097/00005768-199805000-00007
- Bouchard C, Malina RM, Pérusse L. Genetics of fitness and physical performance. Human Kinetics: Champaign, IL, USA; 1997. 400 р.
- Bray MS, Hagberg JM, Pérusse L, et al. The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc. 2009;41(1):35–73. doi: 10.1249/mss.0b013e3181844179
- Godina E, Khromov-Borisov N, Bondareva E. Prediction of success in sports based on assumed individual genetic predisposition: lack of association with the C > T variant in the ACTN3 gene. J Physiol Anthropol. 2025;44(1):6. doi: 10.1186/s40101-025-00386-7
- Tanisawa K, Wang G, Seto J, et al. Sport and exercise genomics: the FIMS 2019 consensus statement update. Br J Sports Med. 2020;54(16):969–975. doi: 10.1136/bjsports-2019-101532
- Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, et al. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol. 2022;122(8):1811–1830. doi: 10.1007/s00421-022-04945-z
- Khromov-Borisov NN. Fortune telling on gene grounds. In: International scientific and practical conference named after V.L. Ginzburg and E.P. Kruglyakov "Pseudoscience in the modern world: media sphere, higher education, school". Saint Petersburg; 2016. Р. 62–64. (In Russ.) doi: 10.13140/RG.2.1.1442.2644 EDN: YQLKLR
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71
- Amir O, Amir R, Yamin C, et al. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp Physiol. 2007;92(5):881–886. doi: 10.1113/expphysiol.2007.038711
- Drozdovska SB, Dosenko VE, Ahmetov II, Ilyin VN. The association of gene polymorphisms with athlete status in ukrainians. Biol Sport. 2013;30(3):163–167. doi: 10.5604/20831862.1059168
- Falahati A, Arazi H. Association of ACE gene polymorphism with cardiovascular determinants of trained and untrained Iranian men. Genes Environ. 2019;41:8. doi: 10.1186/s41021-019-0126-7
- Flück M, Kramer M, Fitze DP, et al. Cellular aspects of muscle specialization demonstrate genotype — phenotype interaction effects in athletes. Front Physiol. 2019;10:526. doi: 10.3389/fphys.2019.00526
- Gineviciene V, Jakaitiene A, Aksenov MO, et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol Sport. 2016;33(3):199–206. doi: 10.5604/20831862.1201051
- Grenda A, Leońska-Duniec A, Kaczmarczyk M, et al. Interaction between ACE I/D and ACTN3 R557X polymorphisms in Polish competitive swimmers. J Hum Kinet. 2014;42:127–136. doi: 10.2478/hukin-2014-0067
- Hagberg JM, Ferrell RE, McCole SD, et al. VO2 max is associated with ACE genotype in postmenopausal women. J Appl Physiol (1985). 1998;85(5):1842–1846. doi: 10.1152/jappl.1998.85.5.1842
- Heffernan SM, Kilduff LP, Erskine RM, et al. Association of ACTN3 R577X but not ACE I/D gene variants with elite rugby union player status and playing position. Physiol Genomics. 2016;48(3):196–201. doi: 10.1152/physiolgenomics.00107.2015
- Kim JH, Jung ES, Kim CH, et al. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J Exerc Nutrition Biochem. 2014;18(2):205–214. doi: 10.5717/jenb.2014.18.2.205
- Kothari ST, Chheda P, Chatterjee L, Das BR. Molecular analysis of genetic variation in angiotensin I-converting enzyme identifies no association with sporting ability: First report from Indian population. Indian J Hum Genet. 2012;18(1):62–65. doi: 10.4103/0971-6866.96653
- Mägi A, Unt E, Prans E, et al. The association analysis between ACE and ACTN3 genes polymorphisms and endurance capacity in young cross-country skiers: longitudinal study. J Sports Sci Med. 2016;15(2):287–294.
- Onori ME, Pasqualetti M, Moretti G, et al. Genetics and sport injuries: new perspectives for athletic excellence in an Italian court of rugby union players. Genes (Basel). 2022;13(6):995. doi: 10.3390/genes13060995
- Rankinen T, Pérusse L, Gagnon J, et al. Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the HERITAGE family study. J Appl Physiol (1985). 2000;88(3):1029–1035. doi: 10.1152/jappl.2000.88.3.1029
- Ruiz JR, Gómez-Gallego F, Santiago C, et al. Is there an optimum endurance polygenic profile? J Physiol. 2009;587(Pt 7):1527–1534. doi: 10.1113/jphysiol.2008.166645
- Saber-Ayad MM, Nassar YS, Latif IA. Angiotensin-converting enzyme I/D gene polymorphism affects early cardiac response to professional training in young footballers. J Renin Angiotensin Aldosterone Syst. 2014;15(3):236–242. doi: 10.1177/1470320312471150
- Sgourou A, Fotopoulos V, Kontos V, et al. Association of genome variations in the renin-angiotensin system with physical performance. Hum Genomics. 2012;6(1):24. doi: 10.1186/1479-7364-6-24
- Shahmoradi S, Ahmadalipour A, Salehi M. Evaluation of ACE gene I/D polymorphism in Iranian elite athletes. Adv Biomed Res. 2014;3:207. doi: 10.4103/2277-9175.143242
- Shenoy S, Tandon S, Sandhu J, Bhanwer AS. Association of angiotensin converting enzyme gene polymorphism and Indian army triathletes performance. Asian J Sports Med. 2010;1(3):143–150. doi: 10.5812/asjsm.34855
- Tanriverdi H, Evrengul H, Tanriverdi S, et al. Improved endothelium dependent vasodilation in endurance athletes and its relation with ACE I/D polymorphism. Circ J. 2005;69(9):1105–1110. doi: 10.1253/circj.69.1105
- Taylor RR, Mamotte CD, Fallon K, van Bockxmeer FM. Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol (1985). 1999;87(3):1035–1037. doi: 10.1152/jappl.1999.87.3.1035
- Varillas-Delgado D, Tellería Orriols JJ, Del Coso J. Genetic profile in genes associated with cardiorespiratory fitness in elite Spanish male endurance athletes. Genes (Basel). 2021;12(8):1230. doi: 10.3390/genes12081230
- Varillas-Delgado D, Morencos E, Gutiérrez-Hellín J, et al. Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS One. 2022;17(9):e0274880. doi: 10.1371/journal.pone.0274880
- Végh D, Reichwalderová K, Slaninová M, Vavák M. The effect of selected polymorphisms of the ACTN3, ACE, HIF1A and PPARA genes on the immediate supercompensation training effect of elite Slovak endurance runners and football players. Genes (Basel). 2022;13(9):1525. doi: 10.3390/genes13091525
- Wei Q. The ACE and ACTN3 polymorphisms in female soccer athletes. Genes Environ. 2021;43(1):5. doi: 10.1186/s41021-021-00177-3
- Graffelman J, Moreno V. The mid p-value in exact tests for Hardy-Weinberg equilibrium. Stat Appl Genet Mol Biol. 2013;12(4):433–448. doi: 10.1515/sagmb-2012-0039
- Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics. 2017;18(1):563. doi: 10.1186/s12859-017-1990-4
- Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis. Res Synth Methods. 2017;8(4):537–553. doi: 10.1002/jrsm.1260
- Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet. 2023;14:1232987. doi: 10.3389/fgene.2023.1232987
- Baker J, Schorer J, Wattie N. Compromising talent: issues in identifying and selecting talent in sport. Quest. 2017;70(1):1–16. doi: 10.1080/00336297.2017.1333438
- Borenstein M. How to understand and report heterogeneity in a meta-analysis: The difference between I-squared and prediction intervals. Integr Med Res. 2023;12(4):101014. doi: 10.1016/j.imr.2023.101014
- Borg DN, Impellizzeri FM, Borg SJ, et al. Meta-analysis prediction intervals are under reported in sport and exercise medicine. Scand J Med Sci Sports. 2024;34(3):e14603. doi: 10.1111/sms.14603
- Rubanovich AV, Khromov-Borisov NN. Theoretical analysis of the predictability indices of the binary genetic tests. Russian Journal of Genetics: Applied Research. 2014;4(2):146–158. doi: 10.1134/S2079059714020087 EDN: SKRQNF
- Webborn N, Williams A, McNamee M, et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br J Sports Med. 2015;49(23):1486–1491. doi: 10.1136/bjsports-2015-095343
- Khromov-Borisov NN, Rubanovich AV. Evolutionary medical genomics. Molecular Medicine. 2014;(2):13–17. EDN: SDBWEL
- Psatha A, Al-Mahayri ZN, Mitropoulou C, Patrinos GP. Meta-analysis of genomic variants in power and endurance sports to decode the impact of genomics on athletic performance and success. Hum Genomics. 2024;18(1):47. doi: 10.1186/s40246-024-00621-9
- Harris A, Kelly SE, Wyatt S. Counseling customers: emerging roles for genetic counselors in the direct-to-consumer genetic testing market. J Genet Couns. 2013;22(2):277–288. doi: 10.1007/s10897-012-9548-0
- Williams AG. Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol. 2008;586(1):113–121. doi: 10.1113/jphysiol.2007.141887
- Pranckeviciene E, Gineviciene V, Jakaitiene A, et al. Total genotype score modelling of polygenic endurance-power profiles in Lithuanian elite athletes. Genes. 2021;12(7):1067. doi: 10.3390/genes12071067
- Ruiz JR, Arteta D, Buxens A, et al. Can we identify a power-oriented polygenic profile? J Appl Physiol (1985). 2010;108(3):561–566. doi: 10.1152/japplphysiol.01242.2009
- Hughes DC, Day SH, Ahmetov II, Williams AG. Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J Sports Sci. 2011;29(13):1425–1434. doi: 10.1080/02640414.2011.597773
- Pickering C, Kiely J. Can genetic testing predict talent? A case study of 5 elite athletes. Int J Sports Physiol Perform. 2021;16(3):429–434. doi: 10.1123/ijspp.2019-0543
- Chen R, Shi L, Hakenberg J, et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34(5):531–538. doi: 10.1038/nbt.3514
Supplementary files



