Analysis of the influence of living conditions, as a collection of social factors within the environment, on mortality rates among the rural and urban populations of the Nenets autonomous okrug from 2000 to 2019

Cover Page

Cite item

Abstract

BACKGROUND: Currently, in the Arctic zone of the Russian Federation (AZRF), there are evident indications of a deterioration in the medical and demographic situation amidst a lack of adequate social infrastructure development. For the first time, we attempted to analyze the impact of living conditions, which encompass various social factors within the habitat, shaped by the social infrastructure, on the mortality rates of the population of one of the regions within AZRF.

AIM: To assess the impact of living conditions, as a set of social factors within the environment, on the mortality rates among the rural and urban populations of the Nenets autonomous okrug (NAO) in the period from 2000 to 2019.

MATERIALS AND METHODS: The databases “Housing and communal services and social infrastructure in NAO in 2000-2019” and “Death cases in NAO in 2000–2019” including information on the population number and age and gender structure of the NAO population across individual settlements have been collected. Using the scoring system for assessing living conditions, a ranking with subsequent division into tertiles of all rural NAO settlements was carried out according to the value of the integral index of living conditions (IILC). A comparative analysis (tertiles with the city, and tertiles with each other) of average annual age-standardized rates of overall mortality, mortality from the main causes and structural components of external causes (EC) of mortality was performed. Relative risks were calculated as the ratio of mortality rates in each tertile to the corresponding indicator for the urban population.

RESULTS: Average annual standardized rates and relative risks of mortality (total, EC, drowning, freezing, alcohol poisoning and transport accidents) of the NAO population demonstrated a “step by step” increase in the sequence “city — highest tertile — middle tertile — lowest tertile”, i.e. as living conditions worsen and as the IILC decreases. Statistically significant differences were identified between the city and tertiles, as well as between the highest (“favorable” living conditions) and lowest (“unfavorable” living conditions) tertiles in terms of total mortality, mortality from EC, drowning and freezing. Mortality rates from alcohol poisoning and transport accidents also increased as living conditions worsened, although the associations did reach the level of statistical significance. With the exception of suicides, the relative risks of mortality for individual EC reached maximum values in the lowest tertile of living conditions.

CONCLUSION: Statistically significant inverse associations between total mortality, mortality from external causes and its main structural components, and the values of the integral index of living conditions have been identified among the rural population of NAO. A decrease in living conditions was significantly associated with an increase in mortality rates and relative risks.

About the authors

Alexey A. Dudarev

Northwest Public Health Research Center

Email: alexey.d@inbox.ru
ORCID iD: 0000-0003-0079-8772
SPIN-code: 1683-1401

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg, 191036

Alexey V. Dozhdikov

Northwest Public Health Research Center

Author for correspondence.
Email: aleksejdozhdikov@yandex.ru
ORCID iD: 0000-0001-7286-7648
SPIN-code: 9959-9339
Russian Federation, Saint Petersburg, 191036

References

  1. Dudarev AA, Dozhdikov AV. Targeted approach to assessing the impact of living conditions and social factors of the habitat on the medico-demographic status of rural territories in the Arctic zone of the Russian Federation. Ekologiya cheloveka (Human Ecology). 2023;30(8):639–653. EDN: DAGESO doi: 10.17816/humeco596456
  2. Dudarev AA, Dozhdikov AV. Comparative analysis of living conditions and environmental factors related to the population demography, well-being and health in urban and rural areas of Nenets autonomous okrug (Arctic Russia): 2000–2019. Arctic Yearbook. 2022. Available from: https://arcticyearbook. com/images/yearbook/2022/Scholarly-Papers/8A_AY2022_ Dudarev_Dozhdikov.pdf
  3. Dudarev AA, Dozhdikov AV. Comparative analysis of health and demographic indicators among urban and rural populations for assessment of health risks and reproduction of the population of the Nenets AO. Health — the Base of human Potential: Problems and Ways to Solve Them. 2021;16(3):891–905. (In Russ.) EDN: AJUIFW
  4. Dudarev AA, Dozhdikov AV. Comparative analysis of living conditions and environmental factors of the urban and rural population applied to the assessment of sanitary-epidemiological well-being of the population of the Nenets AO. Health — the Base of human Potential: Problems and Ways to Solve Them. 2021;16(1):172–188. (In Russ.) EDN: DRWWVM
  5. Dudarev AA, Dozhdikov AV. Spatio-temporal distribution of mortality rates of the Nenets okrug population in the period 2000–2019: analysis of the database formed in terms of individual settlements. Health — the Base of human Potential: Problems and Ways to Solve Them. 2022;17(3):1072–1084. (In Russ.) EDN: AEJJMV
  6. Dozhdikov AV, Dudarev AA. Structure and dynamics of standardized mortality indicators of the Nenets AO population in comparison with some regions of the Arctic zone of Russian Federation in the period 2002-2019 (based on official statistics). Health — the Base of human Potential: Problems and Ways to Solve Them. 2022;17(3):1063–1071. (In Russ.) EDN: QGKDTM
  7. Waterhouse J, Muir CS, Correa P, et al. Cancer Incidence in Five Continents. Vol III. IARC Scientific Publication No. 15. 1976.
  8. Segi M, Kurihara M. Trends in Cancer Mortality for Selected Sites in 24 Countries (1950–59). Tohoku University School of Public Health; 1963.
  9. Doll R, Payne P, Waterhouse J. Cancer Incidence in Five Continents: A Technical Report. Berlin: Springer-Verlag; 1966.
  10. Soloviev AG, Vyazmin AM, Mordovsky EA. Excess alcohol-attributed mortality in Arkhangelsk city and indicators of its undercount (by example of analysis of medical records). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2013;(3):14–19. EDN: RSHSLX doi: 10.25016/2541-7487-2013-0-3-14-19
  11. Sumarokov YA, Brenn T, Kudryavtsev AV, et al. Alcohol and suicide in the Nenets Autonomous Okrug and Arkhangelsk Oblast, Russia. Int J Circumpolar Health. 2016;75:30965. doi: 10.3402/ijch.v75.30965
  12. Bogdanov SV. The mortality rate of the rural population of the Russian Federation from external causes in 2000–2010: trends, characteristics, problems assessing of the real extent in the 1990-2010 years: trends, peculiarities, problems, assess the true scale. Moscow State University Bulletin. Series 18. Sociology and Political Science. 2013;2:124–134. EDN: QGSXXN
  13. Semenova VG, Sabgayda TP, Mikhailov AYu, et al. Mortality of the Russian population from alcohol-related causes in the 2000s. Social Aspects of Population Health. 2018;(1):3. EDN: YTCUSN doi: 10.21045/2071-5021-2018-59-1-3
  14. Mordovsky EA. Cohort and age/gender specific alcohol-attributable mortality in the subarctic regions of the european north of Russia, 2006–2015. Social Aspects of Population Health. 2017;(6):3. EDN: YLXGCE doi: 10.21045/2071-5021-2017-58-6-3
  15. Solovyev AG, Vyazmin AM, Mordovskiy EA. Methodological approaches to determination of alcohol-related mortality in Russia and abroad. Reviews on Clinical Pharmacology and Drug Therapy. 2012;10(4):30–41. EDN: QZKXTB

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average annual (2000–2019) age-standardized rates of total mortality, mortality from circulatory system diseases (CSD), external causes (EC) and cancer, per 10 thousand of the urban and rural Nenets Autonomous Okrug population with the designation of 95% CI and p-value.

Download (44KB)
3. Fig. 2. Average annual (2000–2019) age-standardized rates of total mortality, mortality from circulatory system diseases (CSD), external causes (EC) and cancer, per 10 thousand of the urban population compared to rural Nenets Autonomous Okrug population divided into tertiles (highest, middle and lowest), with the designation of 95% CI and p-values for the compared mortality rates in the populations; * differences between the compared populations are statistically insignificant, since the Kruskal–Wallis test level exceeds 0.05.

Download (201KB)
4. Fig. 3. Average annual (2000–2019) age-standardized rates of mortality from selected external causes, per 10 thousand of the urban and rural Nenets Autonomous Okrug populations with the designation of 95% CI and p-values.

Download (62KB)
5. Fig. 4. Average annual (2000–2019) age-standardized rates of mortality from external causes, per 10 thousand of the urban population compared to the rural Nenets Autonomous Okrug population divided into tertiles (highest, middle and lowest), with the designation of 95% CI and p-values for the compared mortality rates in the populations; * differences between the compared populations are statistically insignificant, since the Kruskal–Wallis test level exceeds 0.05.

Download (265KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».