A review of international experience in air quality assessment

Cover Page

Cite item

Full Text

Abstract

This article provides a comprehensive overview of global practices in assessing atmospheric air quality in different countries. The review is based on scientific literature, regulatory frameworks, and methodological documents. It delves into the specificities of pollutant regulation in various countries, including Russia, and compares the standards established in each. Substantial differences in the approaches to the regulation of pollutants in the atmospheric have been identified between the countries.

Furthermore, this study examines the methods for assessing air quality and instrumental control. It explores renowned mathematical models used for evaluating and predicting atmospheric air quality. Notably, the findings reveal striking similarities between data obtained through predictive modeling and field measurements. However, the utilization of an extensive network of measurement stations enables the acquisition of the most precise and up-to-date information on atmospheric pollutant concentrations.

Moreover, this article offers an overview of online services available globally for real-time monitoring of atmospheric air quality. These platforms play a crucial role in providing immediate insights into the state of the air we breathe. Additionally, the article presents the methods employed for assessing the health risks associated with atmospheric pollutant levels and their impact on the population health.

It has been established that the countries of Europe, the USA, and China have achieved significant success in the field of atmospheric air quality control. Residents in these countries have access to up-to-date information about the state of atmospheric air in real-time. However, in Russia, despite ongoing assessments of air quality, there is currently no public service available that provides comprehensive information on atmospheric air quality.

About the authors

Michail V. Pozdnyakov

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University named after V.I. Razumovsky

Author for correspondence.
Email: mpozdnyakov@yandex.ru
ORCID iD: 0000-0002-2067-3830
SPIN-code: 6726-4542

Cand. Sci. (Phys. and Math.)

Russian Federation, Saratov; Saratov

Svyatoslav I. Mazilov

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: smazilov@ya.ru
ORCID iD: 0000-0002-8220-145X
SPIN-code: 2048-0643

Cand. Sci. (Biol.)

Russian Federation, Saratov

Svetlana V. Raikova

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University named after V.I. Razumovsky

Email: matiz853@yandex.ru
ORCID iD: 0000-0001-5749-2382
SPIN-code: 1286-5149

MD, Cand. Sci. (Med.), associate professor

Russian Federation, Saratov; Saratov

Yury S. Gusev

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: yuran1989@yandex.ru
ORCID iD: 0000-0001-7379-484X
SPIN-code: 1776-5237

Cand. Sci. (Biol.)

Russian Federation, Saratov

Natalia E. Komleva

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University named after V.I. Razumovsky

Email: nekomleva@yandex.ru
ORCID iD: 0000-0003-4099-9368
SPIN-code: 7145-3073

MD, Dr. Sci. (Med.)

Russian Federation, Saratov; Saratov

Anatoly N. Mikerov

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University named after V.I. Razumovsky

Email: mail@smncg.ru
ORCID iD: 0000-0002-0670-7918
SPIN-code: 1456-5471

Dr. Sci. (Biol.)

Russian Federation, Saratov; Saratov

References

  1. Https://www.who.int/ru/ [internet]. Ambient (outdoor) air pollution. Who fact sheet [cited 2023 mar 31]. Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (in russ).
  2. Dominski FH, Branco JH, Buonanno G, et al. Effects of air pollution on health: a mapping review of systematic reviews and meta-analyses. Environ Res. 2021;201:111487. doi: 10.1016/j.envres.2021.111487
  3. Chanchaeva EA, Gvozdareva OV, Gvozdarev AYu. Air quality and children’s health: the role of increasing transport-related and thermal air pollution. Ekologiya cheloveka (Human Ecology). 2019;26(11):12–19. (In Russ). doi: 10.33396/1728-0869-2019-11-12-19
  4. World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide [Internet]. 2021 [cited 2023 Mar 31]. Available from: https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf (In Russ).
  5. Murav'eva SI, Bukovskij MI, Prohorova EK, i dr. Rukovodstvo po kontrolju vrednyh veshhestv v vozduhe rabochej zony. Moscow: Himija; 1991. 368 p. (In Russ).
  6. https://www.epa.gov/ [Internet]. United States Environmental Protection Agency. NAAQS Table [cited: 04.04.2023]. Available from: https://www.epa.gov/criteria-air-pollutants/naaqs-table
  7. https://environment.ec.europa.eu/ [Internet]. European Commission. Environment [cited 2023 Mar 31]. Available from: https://ec.europa.eu/environment/air/quality/standards.htm
  8. https://www.eea.europa.eu/ [Internet]. European Environment Agency. Air quality standards [cited 2023 Apr 02]. Available from: https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards
  9. Wang Z, Tan Y, Guo M, et al. Prospect of China’s ambient air quality standards. J Environ Sci (China). 2023;123:255–269. doi: 10.1016/j.jes.2022.03.036
  10. Gong J, Ding L, Lu Y, et al. Scientometric and multidimensional contents analysis of PM2.5 concentration prediction. Heliyon. 2023;9(3):e14526. doi: 10.1016/j.heliyon.2023.e14526
  11. Wang Y, Li J, Jing H, et al. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Science and Technology. 2015;49(11):1063–1077. doi: 10.1080/02786826.2015.1100710
  12. Rai AC, Kumar P, Pilla F, et al. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci Total Environ. 2017;607-608:691–705. doi: 10.1016/j.scitotenv.2017.06.266
  13. Koehler KA, Peters TM. New methods for personal exposure monitoring for airborne particles. Curr Environ Health Rep. 2015;2(4):399–411. doi: 10.1007/s40572-015-0070-z
  14. Thomas A, Gebhart J. Correlations between gravimetry and light scattering photometry for atmospheric aerosols. Atmospheric Environment. 1994;28(5):935–938. doi: 10.1016/1352-2310(94)90251-8
  15. Northcross AL, Edwards RJ, Johnson MA, et al. A low-cost particle counter as a real-time fine-particle mass monitor. Environ Sci Process Impacts. 2013;15(2):433–439. doi: 10.1039/c2em30568b
  16. Sousan S, Koehler K, Thomas G, et al. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci Technol. 2016;50(5):462–473. doi: 10.1080/02786826.2016.1162901
  17. Fine GF, Cavanagh LM, Afonja A, Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel). 2010;10(6):5469–5502. doi: 10.3390/s100605469
  18. Aleixandre M, Gerboles M. Review of small commercial sensors for indicative monitoring of ambient gas. Chemical Engineering Transactions. 2012;30.
  19. Piedrahita R, Xiang Y, Masson N, et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmospheric Measurement Techniques. 2014;7(10):3325–3336. doi: 10.5194/amt-7-3325-2014
  20. Stetter JR, Li J. Amperometric gas sensors — a review. Chem Rev. 2008;108(2):352–366. doi: 10.1021/cr0681039
  21. Spinelle L, Gerboles M, Aleixandre M, Bonavitacol F. Evaluation of metal oxides sensors for the monitoring of O3 in ambient air at ppb level. Chemical Engineering Transactions. 2016;54: 319–324.
  22. Karagulian F, Gerboles M, Barbiere M, et al. Review of sensors for air quality monitoring. Luxembourg: Publications Office of the European Union; 2019.
  23. Chloe C. Over 6,000 cities now monitor air quality, WHO reveals. Air Quality News. 2022. Available from: https://airqualitynews.com/2022/04/04/over-6000-cities-now-monitor-air-quality-who-reveals/
  24. https://aqicn.org/ [Internet]. World Air Quality Index. World-wide Air Quality Monitoring Data Coverage [cited 2023 Apr 02]. Available from: https://aqicn.org/sources/
  25. Lin C, Li Y, Yuan Z, et al. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sensing of Environment. 2015;156:117–128. doi: 10.1016/j.rse.2014.09.015
  26. Hua Z, Sun W, Yang G, Du Q. A full-coverage daily average PM2.5 retrieval method with two-stage IVW fused MODIS C6 AOD and two-stage GAM model. Remote Sensing. 2019;11(13):1558. doi: 10.3390/rs11131558
  27. Zhao R, Gu X, Xue B, et al. Short period PM2.5 prediction based on multivariate linear regression model. PLoS One. 2018;13(7):e0201011. doi: 10.1371/journal.pone.0201011
  28. Li T, Guo Y, Liu Y, et al. Estimating mortality burden attributable to short-term PM2.5 exposure: a national observational study in China. Environ Int. 2019:125:245–251. doi: 10.1016/j.envint.2019.01.073
  29. Ford B, Heald CL. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter. Atmos Chem Phys. 2016;16(5):3499–3523. doi: 10.5194/acp-16-3499-2016
  30. van Donkelaar A, Martin RV, Levy RC, et al. Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010. Atmospheric Environment. 2011;45(34):6225–6232. doi: 10.1016/j.atmosenv.2011.07.068
  31. Holben BN, Kim J, Sano I, et al. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks. Atmos Chem Phys. 2018;18(2):655–671. doi: 10.5194/acp-18-655-2018
  32. Sorek-Hamer M, Chatfield R, Liu Y. Review: strategies for using satellite-based products in modeling PM2.5 and short-term pollution episodes. Environ Int. 2020;144:106057. doi: 10.1016/j.envint.2020.106057
  33. https://ecologyofrussia.ru/ [Internet]. Federal project "Chistyy vozdukh" [cited 2023 Apr 02]. Available from: https://ecologyofrussia.ru/proekt/chistyj-vozduh (In Russ).
  34. https://www.feerc.ru/ [Internet]. Nacional'nyj proekt "Jekologija". Federal project "Chistyy vozdukh" [cited 2023 Apr 02]. Available from: http://www.feerc.ru/uisem/portal/ (In Russ).
  35. https://www.meteorf.gov.ru/ [Internet]. Structure of Department for Hydrometeorology and Environmental Monitoring of Russia (Roshydromet) [cited 2023 May 03]. Available from: https://www.meteorf.gov.ru/about/structure/local/ (In Russ).
  36. https://www.epa.gov/ [Internet]. EPA AQS (Air Quality System) [cited 2023 Apr 02]. Available from: https://www.epa.gov/outdoor-air-quality-data/air-data-basic-information
  37. Byun D, Schere K. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl Mech Rev. 2006;59(2):51–77. doi: 10.1115/1.2128636
  38. https://www.eea.europa.eu/ [Internet]. European Enviromental Agency [cited 2023 May 02]. Available from: https://www.eea.europa.eu/en (In Russ).
  39. Liu X, Hadiatullah H, Tai P, et al. Air pollution in Germany: spatio-temporal variations and their driving factors based on continuous data from 2008 to 2018. Environ Pollut. 2021;276:116732. doi: 10.1016/j.envpol.2021.116732
  40. https://uk-air.defra.gov.uk/ [Internet]. UK AIR. Air Information Resource [cited 2023 Apr 02]. Available from: https://uk-air.defra.gov.uk/networks/network-info
  41. Rodrigues V, Gama C, Ascenso A, et al. Assessing air pollution in European cities to support a citizen centered approach to air quality management. Sci Total Environ. 2021;799:149311. doi: 10.1016/j.scitotenv.2021.149311
  42. Kumar A, Gupta I, Brandt J, et al. Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India. J Air Waste Manag Assoc. 2016:66(5):470–481. doi: 10.1080/10962247.2016.1143887
  43. Zhang F, Shi Y, Fang D, et al. Monitoring history and change trends of ambient air quality in China during the past four decades. J Environ Manage. 2020;260:110031. doi: 10.1016/j.jenvman.2019.110031
  44. Maji KJ, Dikshit AK, Arora M, Deshpande A. Estimating premature mortality attributable to PM2.5 exposure and benefit of Air Pollution Control Policies in China for 2020. Sci Total Environ. 2018;612:683e693. doi: 10.1016/j.scitotenv.2017.08.254
  45. Li X, Hussain SA, Sobri S, Md Said MS. Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere. 2021;271:129502. doi: 10.1016/j.chemosphere.2020.129502
  46. http://www.gisa.ru/ [Internet]. GIS-Association [cited 2023 Apr 02]. Available from: http://www.gisa.ru/assoc.html (In Russ).
  47. Liu H, Yin S, Chen C, Duan Z. Data multi-scale decomposition strategies for air pollution forecasting: a comprehensive review. Journal of Cleaner Production. 2020;277:124023. doi: 10.1016/j.jclepro.2020.124023
  48. Belikhov AB, Legotin DL, Sukhov AK. Modelirovaniye rasprostraneniya atmosfernykh zagryazneniy s pomoshch'yu sistemy SILAM. Vestnik KGU im. N.A. Nekrasova. 2014;1:7–11. (In Russ).
  49. Beljaev NN. Chislennye modeli dlja prognoza zagrjaznenija atmosfernogo vozduha vybrosami avtotransporta. Nauka ta progres transportu. 2016;(6):25–32. (In Russ).
  50. Rao S, Klimont Z, Smith SJ, et al. Future air pollution in the shared socioeconomic pathways. Global Environmental Change. 2017;42:346–358. doi: 10.1016/j.gloenvcha.2016.05.012
  51. Rao ST, Luo H, Astitha M, et al. On the Limit to the accuracy of regional-scale air quality models. Atmos Chem Phys. 2020:20(3):1627–1639. doi: 10.5194/acp-20-1627-2020
  52. Porter PS, Rao ST, Hogrefe C, et al. Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments. Atmospheric Environment. 2015;112:178–188. doi: 10.1016/j.atmosenv.2015.04.039
  53. Tella A, Balogun AL. GIS-based air quality modelling: spatial prediction of PM10 for Selangor State, Malaysia using machine learning algorithms. Environ Sci Pollut Res. 2022;29(57):86109–86125. doi: 10.1007/s11356-021-16150-0
  54. Otsenka riska dlya zdorov'ya ot zagryazneniya vozdukha — obshchiye printsipy. Kopengagen: Yevropeyskoye regional'noye byuro VOZ; 2016. (In Russ).
  55. Shvyryayev AA, Men'shikov VV. Otsenka riska vozdeystviya zagryazneniya atmosfery v issleduyemom regione: Uchebnoye posobiye dlya vuzov. Moscow: Izdatel’stvo MGU; 2004. 124p. (In Russ).
  56. Men'shikov VV, Shvyryaev AA. Opasnyye khimicheskiye protsessy i tekhnogennyy risk: uchebnoye posobiye. Moscow: Izdatel’stvo MGU; 2003. (In Russ).

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies