SCIENTIFIC FORECASTING OF TOXICITY AND EVALUATION OF HAZARD POTENTIAL OF ALUMINUM OXIDE NANOPARTICLES FOR HUMAN HEALTH


Cite item

Full Text

Abstract

Aim: scientific forecasting toxicity and evaluation potential hazard of the biological action of aluminum oxide nanoparticles for human health. Methods: forecasting toxicity and assessment of potential hazards was carried out according to the results of forecasting-analytical modeling complexes of indicators characterizing physico-chemical, molecular biological, biochemical, cytological and ecological properties with calculation coefficients of hazard (D) and incompleteness of data evaluation (U) of nanoscale aluminum. Own research on the establishment of size and shape of nanomaterial were performed using dynamic laser light scattering and scanning electron microscopy, specific surface area were determined by the method of Brunauer, Emmet and Taylor. Results: aluminum oxide nanoparticles have a size of 30-40 nm, specific surface area 113 m2/g insoluble in water, superhydrophobic, have an effective positive charge. They are have the ability to generate reactive oxygen, damage DNA, disrupt protein expression, depolarize cell membrane, cause morphological changes and cell death, disturb the mitochondrial metabolism, impact on proteomic and metabolic profiles, inducing pro-inflammatory cytokine interleikin-1, ß, tumor necrosis factor and cluster of differentiation 86, 80 and 40. Besides, the material under investigation has such long-term effects of aaction: carcinogenicity and immunotoxicity. Conclusions: based on the results of forecasting modeling, established: aluminum oxide nanoparticles have a high degree of potential hazard for human health (coefficient D = 2,202 that is included in the range 1,780-2,449 and correspond to a high degree of potential hazard). The results indicate necessity for toxicological studies and preparation toxicological-hygienic characteristics of aluminum oxide nanoparticles at various routes of intake for development of effective preventive measures of negative impact on workers and consumers in contact with nanoproducts.

About the authors

N V Zaitseva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

SPIN-code: 7036-3511

A Aleksandrovna Zemlyanova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University; Perm National Research Polytechnic University

Email: zem@fcrisk.ru
SPIN-code: 4308-0295
доктор медицинских наук, зав. отделом биохимических и цитогенетических методов диагностики; проф. кафедры экологии человека и безопасности жизнедеятельности

M S Stepankov

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University

SPIN-code: 4404-5953

A M Ignatova

Perm State National Research University; Perm National Research Polytechnic University

SPIN-code: 7690-7783

References

  1. Зайцева Н. В., Землянова М. А., Акафьева Т. И., Звездин В. Н. Оценка потенциальной опасности наноразмерного оксида никеля // Экология человека. 2016. № 10. С. 10-16.
  2. Макаров Д. В. Прогноз развития мирового рынка нанопорошков // Вестник КРАУНЦ. Физико-математические науки. 2014. № 1 (8). С. 97-102.
  3. Микроинтек [сайт]. URL: https://microintech. ru/poleznoe/nano-oksid-aliuminiia (дата обращения: 27.03.2017)
  4. Ansari M. A., Khan H. M., Alzohairy M. A. et al. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa // World Journal of Microbiology and Biotechnology. 2015. N 31 (1). Р. 153-164.
  5. Arul Prakash F., Dushendra Babu G. J., Lavanya M. et al. Toxicity studies of aluminium oxide nanoparticles in cell lines // International Journal of Nanotechnology and Applications. 2011. N 5 (2). P. 99-107.
  6. Bahadar H., Maqbool F., Niaz K. et al. Toxicity of Nanoparticles and an Overview of Current Experimental Models // Iranian Biomedical Journal. 2016. N 20 (1). P. 1-11.
  7. Balasubramanyam A., Sailaja N., Mahboob M. et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test // Mutagenesis. 2009. N 24 (3). P. 245-251.
  8. Chen L., Yokel R.A., Hennig B. et al. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature // J Neuroimmune Pharmacol. 2008. N 3 (4). P. 286-295.
  9. Di Virgilio A. L., Reigosa M., Arnal P. M. et al. Comparative study of the cytotoxic and genotoxi ceffects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells // J Hazard Mater. 2010. N 177. P. 711-718.
  10. El-Hussainy el-H. M., Hussein A. M., Abdel-Aziz A. et al. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid // Canadian Journal of Physiology and Pharmacology. 2016. N 94 (8). P. 868-878.
  11. Huang Y.-W., Wu C.-h. and Aronstam R. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies // Materials. 2010. N 3. P. 4842-4859.
  12. International Agency for Research on Cancer [сайт]. URL: http://monographs.iarc.fr/ENG/Classification/index. php (дата обращения: 22.03.2017).
  13. Lin W., Stayton I., Huang Y. et al. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549 // Toxicological & Environmental Chemistry. 2008. N 90 (5). P. 983-996.
  14. Mailloux R., Lemire J., Appanna V. Hepatic response to aluminum toxicity: Dyslipidemia and liver diseases // Experimental Cell Research. 2011. N 317 (16). P. 2231-2238.
  15. Mukherjee A., Sadiq I M., Prathna T. et al. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications // Science against microbial pathogens: communicating current research and technological advances. 2011. Vol. 1. P. 245-251.
  16. Nanografi [сайт]. URL: https://nanografi.com/ nanoparticles/al2o3-aluminium-oxide-nanoparticles-aluminic-ester-98-1 -1-2-alpha-55nm-super-hydrophobic (дата обращения: 23.02.2017)
  17. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultra-fine Particles // Environ. Health Perspect. 2005. N 113 (7). P. 823-839.
  18. Pakrashi S., Dalai S., Prathna T. C. et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water isolate at low exposure concentrations algal // Aquatic Toxicology. 2013. N 132-133. P. 34-45.
  19. Pal U., Sandoval A., Uribe Madrid S. I. et al. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution // Chemosphere. 2016. N 163. Р. 142-152.
  20. Park E-J., Sim J., Kim Y. A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice // Archives of Toxicology. 2015. N 89 (3). P. 371-379.
  21. Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxihydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size // Toxicol Sciences. 2009. N 109. P. 152-167.
  22. Photocor [сайт]. URL: http://www.photocor.ru/theory/ zeta-potential (дата обращения: 23.02.2017).
  23. Popat K. C., Mor G., Grimes C. A., et al. Surface modification of nanoporous alumina surfaces with poly (ethylene glycol) // Langmuir. 2004. N 20. P. 8035-8041.
  24. Rittner M. N. Market analysis of nanostructured materials // Am. Ceram. Soc. Bull. 2002. N 81. P. 33-36.
  25. Vinardell M. P., Sorde A., Diaz J. et al. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature and size // Journal of Nanoparticle Research. 2015. N 17 (2). P. 1-28.
  26. Weiss J., Takhistov P., McClements J. Functional materials in food nanotechnology // J Food Sci. 2006. N 71. P. 107-115.
  27. Willhite C., Karyakina N., Yokel R. et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts // Critical Reviews in Toxicology. 2014. N 44 (4). P. 1-80.
  28. Xie Y., and Zhuang Z. X. Chromium (Vl)-induced production of reactive oxygen species, change of plasma membrane potential and dissipation of mitochondria membrane potential in Chinese hamster lung cell cultures // Biomedical and Environmental Sciences. 2001. N 14 (3). P. 199-206.
  29. Yildirim A., Ozgur E., and Bayindir M. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption // Journal of Materials Chemistry B. 2013. N 1. P. 1909-1920.
  30. Yokel A. and McNamara P. J. Aluminium toxicokinetics: an updated minireview // Pharmacol Toxicol. 2001. N 88 (4). P. 159-167.

Copyright (c) 2018 Human Ecology


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies