FEASIBILITY STUDY OF GROUP ESTIMATION OF THERMAL COMFORT USING FANGER’S THEORY APPLIED TO PEOPLE WITH DIFFERENT WORKING CAPABILITIES
- Authors: Huseynova MV1
-
Affiliations:
- Azerbaijan Technical University
- Issue: Vol 26, No 4 (2019)
- Pages: 60-64
- Section: Articles
- URL: https://journals.rcsi.science/1728-0869/article/view/16612
- DOI: https://doi.org/10.33396/1728-0869-2019-4-60-64
- ID: 16612
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
M V Huseynova
Azerbaijan Technical University
Email: m.v.huseynova@gmail.com
старший преподаватель Baku, Azerbaijan Republic
References
- Дворецкий С. И. Производственный микроклимат: (оценка и прогнозирование воздействия): метод. указ. / сост.: В. М. Дмитриев, Е. А. Сергеева, Л. С. Тарова, В. Б. Михайлов, А. В. Бояршинов. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2003. Ч. 1. 32 с
- Дорофеев В. Н. Теоретические основы создания микроклимата в помещении. URL: http://e.lib.vlsu.ru:80/handle/123456789/5545 (дата обращения: 30.03.2018)
- Индексы теплового комфорта: учебно-методическое пособие / Университет ИТМО. Санкт-Петербург, 2016
- Нагорная А. Н. Применение CFM-программ для исследования тепловых и воздушных режимов помещений. Наука ЮУрГУ: материалы 66-й научной конференции Секции технических наук. Челябинск, 2012. С. 985-992
- Altayeva A. B., Omarov B. S., Cho Y. I. Intelligent Microclimate Control System Based on IoT. International Journal of Fuzzy Logic and Intelligent Systems. 2016, 16 (4), pp. 254-261.
- Bryn I., Smidsrad M. Thermal Comfort; Operative Temperature in the Sun. Available at: www.irbnet.de/daten/iconda/CIB2448.pdf (accessed: 30.03.18).
- Cheng Ch. Ch., Lee D. Smart Sensors Enable Smart Air Conditioning Control. Sensors. 2014, 14 (6), pp. 11179-1203; doi: 10.3390/s140611179 (accessed: 30.03.18).
- Chen X., Wang Q., Srebric J. Model predictive control for indoor thermal comfort and energy optimization using occupant feedback. Energy and Buildings. 2015, 102, pp. 357-369.
- Duarte-Galvan C., Torres-Pacheco I., Guevara-Gonzalez R. G., Romero-Troncoso R. J., Contreras-Medina L. M., Rios-Alcaraz M. A., Millan-Almaraz J. R. Review. Advantages and disadvantages of control theories applied in greenhouse climate control systems. Spanish Journal of Agricultural Research. 2012, 10 (4), pp. 926-938.
- Ekici C. A review of thermal comfort and method of using Fangers PMV equation. Available at: https://www.researchgate.net/publication/289201295_A_review_of_thermal_comfort_and_method_of_using_Fanger%27s_PMV_equation (accessed: 30.03.18).
- Engineering ToolBox. Predicted Mean Vote Index (PMV). Available from: http://www.engineeringtoolbox.com/predictewd-mean-vote-index-PMV-d_1631 SPOT: A Smart Personalized Office Thermal Control System. html (accessed: 30.03.18).
- Feriadi H., Wong N. H., Chandra S., Cheong K. W., Tham K. W. Redefining appropriate thermal comfort standard for naturally ventilated buildings in tropics (singapore and indonesia perspective). Proceedings: Indoor Air 2002. Available at: https://www.irbnet.de/daten/iconda/CIB7768.pdf (accessed: 30.03.18).
- Gallardo A., Palme M., Lobato-Cordero A., Beltran R. D., Gaona G. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone. Buildings. 2016, 6 (3), 27; doi: 10.3390/buildings6030027
- Gao P. X., Keshav S. A smart personalized office thermal control system/conferences.sigcomm.org/eenergy/2013/papers/p21.pdf (accessed: 30.03.18).
- Genco A., Viggiano A., Viscido L., Sellitto G., Magi V. Optimization of microclimate control systems for air-conditioned environments. International journal of heat and technology. 2017, 35 (1), pp. S236-S243.
- Goyal S., Ingley H., Barooah P. Occupancy-Based Zone-Climate Control for Energy-Efficient Buildings: Complexity vs. Performance. Applied Energy. 2013, 106, pp. 209-221.
- Hoof1 J., Mazej M., Hensen Jan L. M. Thermal comfort: research and practice. Frontiers in Bioscience. 2010, 15, pp. 765-788.
- Kajtar L., Nyers J., Szabo J., Ketskemety L., Herczeg L., Leitner A., Bokor B. Objective and Subjective Thermal Comfort Evaluation in Hungary. Thermal Science. 2017, 21 (3), pp. 1409-1418.
- Kim J. H., Min J. K., Kim B. Is the PMV Index an Indicator of Human Thermal Comfort Sensation? International Journal of Smart Home. 2013, 7 (1), pp. 27-35.
- Kotsopoulos S. D., Casalegno F., Cuenin A. Personalizing Thermal Comfort in a Prototype Indoor Space. SIMUL 2013. The Fifth International Conference on Advances in System Simulation. IARIA, 2013, pp. 178-185.
- Lute P., Paassen D. Optimal Indoor Temperature Control Using a Predictor. 0272-1 108/95/$04.000 1995, IEEE Control Systems. Available at: https://pdfs.semanticscholar.org/../0736e6c555eadd1125cfe. (accessed: 30.03.18).
- Nguyen A. T., Singh M. K., Reiter S. An Adaptive Thermal Comfort Model for Hot Humid South. Building and Environment. 2012, 56, pp. 291-300.
- Nicol J. F., Humphreys M. A. Adaptive thermal comfort and sustainable thermal standards for buildings. Available at: https://www.researchgate.net/publication/222402882_Adaptive_Thermal_Comfort_and_Sustainable_Thermal_Standards_for_Buildings (accessed: 30.03.18).
- Pivac N., Nizetic S. Thermal comfort in office buildings: General issues and challenges. Conference Paper April 2017. Available at: https://www.researchgate.net/publication/315809782_Thermal_comfort_ in_office_buildings_General_issues_and_challenges?enrichId=rgreqce65b136d41051d503751da7f2f1f7ca-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgwOTc4MjtBUzo0ODA0NTc3Mzg0NjExODZAMTQ5MTU2MTQ1OTg3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf (accessed: 30.03.18).
- Olesen B. W. Seelen J. Criteria for a comfortable indoor environment in buildings. Journal Thermal Biology. 18 (5-6), pp. 545-549
- José A., Orosa J. A. Research on the Origins of Thermal Comfort. European Journal of Scientific Research. 2009, 34 (4), pp. 561-567.
- Personalizing Thermal Comfort in a Prototype Indoor Space. Available at: http://mobile.mit.edu/fbk/wp-content/uploads/2014/03/simul_2013_8_10_50120.pdf (accessed: 30.03.18).
- Predicting Thermal Comfort AREN 3050. Environmental systems for Buildings. Available from: https://comfort_and_using_Fangers_PMV_equation.method_of_gradebuddy.com/doc/601883/predicting-thermal-comfort?full=1 (accessed: 30.03.18).
- Reinhold K., Tint P., Munter R. Indoor air quality in industrial premises. Material science and applied chemistry. 2009-7353. RTU Zinătniskie raksti Materiălzinătne un lietišėā ėīmija, 20. sējums 2009. Available at: https://ortus.rtu.lv/science/lv/publications/7307/fulltext (accessed: 30.03.18).
- Samarin O. D. The probabilistic-statistical modeling of the external climate in the cooling period. Magazine of Civil Engineering. 2017, 5, pp. 62-68.
- Stazia F., Gregorinib B., Gianangelib A., Bernardinib G., Quagliarini E. Design of a smart system for indoor climate control in historic underground built environment. 9th International Conference on Sustainability in Energy and Buildings, SEB-17, 5-7 July 2017, Chania, Crete, Greece. Energy Procedia. 2017, 134, pp. 518-527.
- Yang Y., Li B., Liu H., Tan M., Yao R. A study of adaptive thermal comfort in a well-controlled climate chamber. Applied Thermal Engineering. 2015, 76, pp. 283-291. Available at: https://doi.org/10.1016/j.applthermaleng.2014.11.004 (accessed: 30.03.18).
Supplementary files
