Changes in complex bioclimatic indicators in Crimea since the middle of the 20th century

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Observed global climate changes can significantly influence on the regional climate anomalies and recreational conditions over the Crimean peninsula.

AIM: To study the features of complex bioclimatic indicators changes on the territory of Crimea over a multidecadal period (~70 years), paying special attention to each month of the year, and on bases of obtained results to show the possible way of recreational activities development associated with these changes.

METHODS: For calculations, we used daily hydrometeorological data for each month from the archive of observations at the network of European weather stations E-OBS (v. 17.0) from 22 stations and NCEP/NCAR R1 reanalysis for the period of 1950–2018. The obtained arrays were verified in accordance with an open database of standard daily station observations in Crimea in 2005–2018. To assess the impact of climate change on the human body, the equivalent effective temperature, normal equivalent effective temperature, weight content of oxygen in the air (partial oxygen density) (ρO2), wet wind chill index Hill (Hw) and index Bodmann dry wind chiller (S) were calculated. The features of their linear trends for each month in the Crimean Peninsula were analysed.

RESULTS: Monthwise analyses of the bioclimatic indicator trends demonstrated an increase or decrease in recreational comfort in certain seasons. The most pronounced positive normal equivalent effective temperature trends over Crimea were observed from winter to spring. This indicated improved complex recreational conditions in recent decades and the possibility to extend the duration of the holiday season. The pO2, Hw and S indices had opposite tendencies throughout the year (except for December). According to the pO2 index, in the period from August to October, a physiological oxygen deficiency may be experienced throughout Crimea. Windy and uncomfortable bioclimatic conditions tend to increase in the steppes of Crimea in December.

CONCLUSION: The patterns of changes in bioclimatic indicators revealed through this study can be used as a regulatory factor for effectively organising and conducting recreational activities in the territory of Crimea and thus ensure the duration of the recreational period.

About the authors

Anna A. Stefanovich

Institute of Natural and Technical Systems; Sevastopol State University

Email: amazurenko@mail.ru
ORCID iD: 0000-0002-4076-7623
SPIN-code: 7723-0167

junior research associate

Russian Federation, Sevastopol; Sevastopol

Elena N. Voskresenskaya

Institute of Natural and Technical Systems; Sevastopol State University

Author for correspondence.
Email: elena_voskr@mail.ru
ORCID iD: 0000-0003-4889-0180
SPIN-code: 3183-6409

MD, Dr. Sci. (Geogr.), professor

Russian Federation, Sevastopol; Sevastopol

References

  1. Vasiliev MS, Nikolashkin SV, Karimov RR. Comparison of surface air temperature in Yakutia derived from reanalysis and ground measurements. Vestnik of the M.K. Ammosov North-Eastern Federal University. 2014;11(5):82–88. (In Russ).
  2. Rybak OO, Rybak EA. Climate change in the South of Russia: tendencies and possibilities for prediction. Polythematic Online Scientific Journal of Kuban State Agrarian University. 2015;(111):538–552. (In Russ).
  3. Federal'naja sluzhba po gidrometeorologii i monitoringu okruzhajushhej sredy (Rosgidromet). Doklad ob osobennostjah klimata na territorii Rossijskoj Federacii za 2021 god. Moscow, 2022. 104 p. (In Russ). Available from: https://www.meteorf.gov.ru/images/news/20220324/4/Doklad.pdf
  4. Nazarova LE. Izmenchivost' klimata vodosbora Onezhskogo ozera In: VI Semenovskie chtenija: nasledie P.P. Semenova-Tjan-Shanskogo i sovremennaja nauka: materialy mezhdunarodnoj nauchnoj konferencii, posvjashhennoj 190-letiju so dnja rozhdenija P.P. Semenova-Tjan-Shanskogo; 2017 May 19–20; Lipeck, Russia. Lipeck: Lipeckij gosudarstvennyj pedagogicheskij universitet imeni P.P. Semenova-Tjan-Shanskogo; 2017. P. 90–91. (In Russ).
  5. Donchenko JaV, Lemeshko NA, Binenko VI. Itogovyj tehnicheskij otchet: ocenka sostojanija klimata v predelah territorii Leningradskoj oblasti, v tom chisle ocenka faktorov vlijanija antropogennoj dejatel'nosti na klimat, razrabotka mer po adaptacii k izmenenijam klimata. Saint Petersburg, 2015. 121 p. (In Russ).
  6. Gorohov AN, Fedorov AN. Current trends in climate change in Yakutia. Geografia i prirodnye resursy. 2018;(2):111–119. (In Russ). doi: 10.21782/GiPR0206-1619-2018-2(111-119)
  7. Rostov ID, Dmitrieva EV, Vorontsov AA. Manifestations of global climate changes in coastal waters and adjacent areas of the Okhotsk Sea. Vestnik of the Far East Branch of the Russian Academy of Sciences. 2018;(6):20–34. (In Russ). doi: 10.25808/08697698.2018.202.6.003
  8. Gajko LA. Variability of water and air temperature along the coast of Eastern Primorye and Khabarovsk Territory based on the weather station data. Morskoi gidrofizicheskii zhurnal. 2022;38(4):389–404. (In Russ). doi: 10.22449/0233-7584-2022-4-389-404
  9. Ponomarev VI, Dmitrieva EV, Shkorba SP. Features of climate regimes in the North Asian Pacific. Monitoring systems of environment (Sistemy kontrolya okruzhayushchej sredy). 2015;(1):67–72. (In Russ).
  10. Hansen J, Sato M, Ruedy R, et al. Global temperature change. Proc Natl Acad Sci U S A. 2006;103(39):14288–14293. doi: 10.1073/pnas.0606291103
  11. Perevedencev JuP, Sherstjukov BG, Shantalinskij KM, et al. Izmenenija temperatury vozduha i atmosfernyh osadkov na territorii Rossii v XX–XXI vekah. In: Klimaticheskie riski i kosmicheskaja pogoda. Materialy Mezhdunarodnoj konferencii, posvjashhennoj pamjati Niny Konstantinovny Kononovoj; 2021 June 14–17; Irkutsk, Rossija. Irkutsk: Irkutskij gosudarstvennyj universitet; 2021. P. 292–298. (In Russ).
  12. Prihodko IA, Verbitsky AYu, Sergeev AE. Climate change on the Black Sea coast of Russia. International Agricultural Journal. 2022;65(1):366–383. (In Russ). doi: 10.55186/25876740-2022-6-1-23
  13. Rybak OO, Rybak EA. Implementation of observations at regular meteorological stations for mass balance calculation of mountain glaciers (on the example of the Dzhankuat glacier, Central Caucasus). Monitoring systems of environment (Sistemy kontrolya okruzhayushchej sredy). 2017;9(29):100–108. (In Russ).
  14. Trubina M, Hasso L, Dyachko Zh. Methods of the bioclimatic estimation of the Northwest region of Russia. Uchenye zapiski Rossijskogo gosudarstvennogo gidrometeorologicheskogo universiteta. 2010;(13):121–137. (In Russ).
  15. Jarosh AM, Soldatchenko SS, Korshunov JuP, et al. Sravnitel'naja mediko-klimatologicheskaja harakteristika osnovnyh primorskih kurortnyh mestnostej Evropy i prilegajushhih k nej regionov Azii i Afriki. Simferopol': Sonat; 2000. 135 p. (In Russ).
  16. Voskresenskaja EN. Izmenchivost' klimaticheskih harakteristik kurortnyh mestnostej Chernogo i Sredizemnogo morej pod vlijaniem global'nyh processov v sisteme okean-atmosfera. Jekologicheskaja bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa. 2003;(9):39–48. (In Russ).
  17. https://rp5.ru/ [Internet]. Raspisanie pogody [cited 28.04.2018]. Available from: https://rp5.ru
  18. Anisimov OA, Zhil'tsova EL. Сlimate change estimates for the regions of Russia in the 20th century and in the beginning of the 21st century based on the observational data. Russian Meteorology and Hydrology. 2012;37(6)421–429. (In Russ). doi: 10.3103/S1068373912060106
  19. Vinogradova VV. Vozdejstvie global'nogo poteplenija na surovost' klimata severnyh i vostochnyh territorij Rossii v 80-e gg. XX veka. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. 1997;(2):126–132. (In Russ).
  20. Perevedentsev YuP, Zandi R, Aukhadeev TR, Shantalinskii KM. Assessment of climate influence on a man in droughty conditions of Southwest Iran. Bulletin of Udmurt University. Series Biology. Earth Sciences. 2015;25(1):104–113. (In Russ).
  21. Isaev AA. Jekologicheskaja klimatologija. Moscow: Nauchnyj mir; 2001. 456 p. (In Russ).
  22. Zolotokrylin AN, Kancebovskaja IV, Krenke AN. Rajonirovanie territorii Rossii po stepeni jekstremal'nosti prirodnyh uslovij dlja zhizni cheloveka. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. 1992;(6):16–30. (In Russ).
  23. Missenard FA. Température effective d’une atmosphere Généralisation température résultante d’un milieu. In: Encyclopédie Industrielle et Commerciale, Etude physiologique et technique de la ventilation. Librerie de l’Enseignement Technique. Paris, 1933. P. 131–185. (In France).
  24. But'eva IV, Shejnova TG. Metodicheskie voprosy integral'nogo analiza mediko-klimaticheskih uslovij. In: Kompleksnye bioklimaticheskie issledovanija. Moscow; 1988. P. 97–108. (In Russ).
  25. Ovcharova VF. Gomeokinez v pogodnuju gipoksiju i giperoksiju. In: Trudy Mezhdunarodnogo simpoziuma VMO/VOZ/JuNEP «Klimat i zdorov'e cheloveka». Leningrad: Gidrometeoizdat; 1988. P. 142–149. (In Russ).
  26. But'eva IV, Galahova JeN, Il'icheva M, et al. Formuly i nomogrammy dlja raschetov mediko-meteorologicheskih pokazatelej. Materialy meteorologicheskih issledovanij. 1984;(8):151–159. (In Russ).
  27. Emelina SV. Prognoz pogodnyh uslovij, neblagoprijatnyh dlja naselenija s serdechno-sosudistymi i allergicheskimi zabolevanijami [dissertation]. Moscow, 2020. (In Russ).
  28. Ezhov VV, Kaladze NN, Jarosh AM. Metodicheskie rekomendacii po klimatolecheniju. Pljazhi i pljazhnye sooruzhenija. Simferopol'; 2010. 72 p. (In Russ).
  29. Razumov AN, Starodubov VI, Ponomarenko GN. Sanatorno-kurortnoe lechenie: nacional'noe rukovodstvo. Moscow: GЕOTAR-Media; 2021. 704 p. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geographical location of the study area and the location of weather stations.

Download (73KB)
3. Fig. 2. Trends of monthly average normal equivalent effective temperature in January (a), March (b), August (c) and September (d) for 1950–2018.

Download (402KB)
4. Fig. 3. Trends of monthly average S in January (a), February (b), March (c) and December (d) for 1950–2018. * insignificant coefficients are marked in black.

Download (377KB)
5. Fig. 4. Trends of monthly average Hw in January (a), February (b), March (c), August (d) and December (e) for 1950–2018. * insignificant coefficients are marked in black.

Download (486KB)
6. Fig. 5. Trends of monthly average pO2 in March (a), August (b), September (c) and October (d) for 1950–2018. * insignificant coefficients are marked in gray.

Download (367KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies