Evaluation potential hazard of molybdenum (VI) oxide nanoparticles for human health

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The expanding scope of molybdenum (VI) oxide (MoO3 NPs) nanoparticle application has increased the risk of developing pathological disorders in the exposed population due to the negative effects of this nanomaterial. As such, there is a need to assess the potential hazard of MoO3 NPs to human health.

AIM: To determine the degree of potential danger of MoO3 nanoparticles for human health.

MATERIAL AND METHODS: The potential hazard of MoO3 NPs was assessed in accordance with MR 1.2.2522-09. A comparative assessment of the physical parameters of nano- and micropowder MoO3 particles (Sigma-Aldrich, USA) in terms of size, specific surface area, total pore volume, and shape was conducted based on the results of our own experimental studies. Generalization of information on physicochemical, molecular biological, cytological, physiological and ecological properties was performed according to the data presented in the scientific literature. Based on the predictive-analytical modeling of the properties of MoO3 NPs, the potential hazard coefficient (D) and the coefficient of incompleteness of data assessment (U) was calculated.

RESULTS: Our findings showed that 84.17% of the nanopowders consists of spherical particles <100 nm in size with an average diameter of 58.80 nm, a specific surface area of 3.66 m2/g, and a total pore volume of 0.0133 cm3/g. Micropowders consist of prismatic particles that are 57.99 times larger in size and but 1.17 and 1.18 times smaller in specific surface area and total pore volume compared to the MoO3 NPs, respectively. MoO3 NPs enhance the generation of intracellular free radicals, accumulate in cells, damage organelle membranes, cause DNA strand breaks, affect gene expression and proteomic profile, which leads to cell death. The toxic effects of MoO3 NPs in vivo are showed in pathomorphological changes in the tissues of the liver, organs of the reproductive system, changes in blood parameters, death of exposed animals, and long-term effects. It has been established that MoO3 NPs have an average degree of potential hazard to human health (D=1.750), the assessment is statistically significant (U=0.147).

CONCLUSION: The obtained results should be taken into account to improve the methodology for the sanitary regulation of nanomaterials in environmental objects and develop preventive measures for workers and populations exposed to MoO3 NPs.

About the authors

Marina A. Zemlyanova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State University; Perm National Research Polytechnic University

Author for correspondence.
Email: zem@fcrisk.ru
ORCID iD: 0000-0002-8013-9613
SPIN-code: 4308-0295
Scopus Author ID: 88831516000

Dr. Sci. (Med.), professor

Russian Federation, Perm; Perm; Perm

Nina V. Zaitseva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: znv@fcrisk.ru
ORCID iD: 0000-0003-2356-1145
SPIN-code: 7036-3511
Scopus Author ID: 7101903269

Dr. Sci. (Med.), professor

Russian Federation, Perm

Mark S. Stepankov

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: stepankov@fcrisk.ru
ORCID iD: 0000-0002-7226-7682
SPIN-code: 4404-5953
Scopus Author ID: 57191591034

junior research associate

Russian Federation, Perm

Anna M. Ignatova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Science

Email: iampstu@gmail.com
ORCID iD: 0000-0001-9075-3257
SPIN-code: 7690-7783
Scopus Author ID: 52263896100

Dr. Sci. (Tech.)

Russian Federation, Perm; Perm

References

  1. Global nanomaterials market (2021 to 2029) — featuring BASF, Bayer and Chasm Technologies among others. Research an Markets. 2021. Available from: https://www.globenewswire.com/news-release/2021/05/18/2231307/28124/en/Global-Nanomaterials-Market-2021-to-2029-Featuring-BASF-Bayer-and-Chasm-Technologies-Among-Others.html.
  2. Nanotechnology market — size, share, COVID impact analysis and forecast to 2027. Research and Markets. 2021. Available from: https://www.researchandmarkets.com/reports/5308793/2021-nanotechnology-market-size-share-covid.
  3. Shafiq M, Anjum S, Hano C, et al. An overview of the applications of nanomaterials and nanodevices in the food industry. Foods. 2020;9(2):148. doi: 10.3390/foods9020148
  4. Piracha S, Saleem S, Momil, et al. Nanoparticle: role in chemical industries, potential sources and chemical catalysis applications. Scholars International Journal of Chemistry Material Sciences. 2021;4(4):40–45. doi: 10.36348/sijcms.2021.v04i04.006
  5. Borodianskiy K, Zinigrad M. Nanomaterials applications in modern metallurgical processes. Diffusion Foundations. 2016;9:30–41. doi: 10.4028/ href='www.scientific.net/DF.9.30' target='_blank'>www.scientific.net/DF.9.30
  6. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(1):3. doi: 10.1186/1477-3155-2-3
  7. Neme K, Nafady A, Uddin S, Tola YB. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon. 2021;7(12):e08539. doi: 10.1016/j.heliyon.2021.e08539
  8. Xie G, Bai H, Miao G, et al. The applications of ultra-thin nanofilm for aerospace advanced manufacturing technology. Nanomaterials (Basel). 2021;11(12):3282. doi: 10.3390/nano11123282
  9. Fu L, Liao K, Tang B, et al. Applications of graphene and Its derivatives in the upstream oil and gas industry: a systematic review. Nanomaterials (Basel). 2020;10(6):1013. doi: 10.3390/nano10061013
  10. Shafique M, Luo X. Nanotechnology in transportation vehicles: an overview of its applications, environmental, health and safety concerns. Materials (Basel). 2019;12(15):2493. doi: 10.3390/ma12152493
  11. Sonwani S, Madaan S, Arora J, et al. Inhalation exposure to atmospheric nanoparticles and Its associated impacts on human health: a review. Front Sustain Cities. 2021;3:1–20. doi: 10.32493389/frsc.2021.690444
  12. Bundshuh M, Filser J, Lüderwald S, et al. Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur. 2018;30(1):6. doi: 10.1186/s12302-018-0132-6
  13. Dror I, Yaron B, Berkowitz B. Abiotic soil changes induced by engineered nanomaterials: a critical review. J Contam Hydrol. 2015;181:3–16. doi: 10.1016/j.jconhyd.2015.04.004
  14. Hewitt RE, Chappel HF, Powell JJ. Small and dangerous? Potential toxicity mechanisms of common exposure particles and nanoparticles. Curr Opin Toxicol. 2020;19:93–98. doi: 10.1016/j.cotox.2020.01.006
  15. Sukhanova A, Bozrova S, Sokolov P, et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;(13)1:44. doi: 10.1186/s11671-018-2457-x
  16. Yah CS, Simate GS, Iyuke SE. Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci. 2012;25(2):477–491.
  17. Molybdenum trioxide nanopowder market: global industry analysis, size, share, growth, trends, and forecasts 2020–2030. Transparency Market Research. Available from: https://www.transparencymarketresearch.com/molybdenum-trioxide-nanopowder-market.html.
  18. Parenago OP, Bakunin VN, Kuz'mina GN, et al. Molybdenum sulfide nanoparticles as new-type additives to hydrocarbon lubricants. Doklady Chemistry. 2002;383(1-3):86–88. (In Russ).
  19. Sobańska Z, Zapór L, Szparaga M, Stępnik M. Biological effects of molybdenum compounds in nanosized forms under in vitro and in vivo conditions. Int J Occup Med Environ Health. 2020;33(1):1–19. doi: 10.13075/ijomeh.1896.01411
  20. Lee SH, Kim YH, Deshpande R, et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Advanced materials. 2008;20(19):3627–3632. doi: 10.1002/adma.200800999
  21. https://www.sigmaaldrich.com/ [Internet]. Molybdenum (VI) oxide. Sigma-Aldrich. Available from: https://www.sigmaaldrich.com/RU/en/product/aldrich/775703.
  22. Peña-Bahamonde J, Wu C, Fanourakis SK, et al. Oxidation state of Mo affects dissolution and visible-light photocatalytic activity of MoO3 nanostructures. Journal of Catalysis. 2020;381:508–519. doi: 10.1016/j.jcat.2019.11.035
  23. Kolawole FO, Ramirez MA, Kolawole SK, et al. Deposition and characterization of molybdenum oxide (MoO3) nanoparticles incorporated diamond-like carbon coating using pulsed-DC PECVD. Materials Letters. 2020;278:128420. doi: 10.1016/j.matlet.2020.128420
  24. Kouchesfehani HM, Mohamadi MM, Sohrabi D. The effect of the molybdenum trioxide (MoO3) nanoparticles on histological changes of testis and spermatogenesis process in adult male Wistar rats. J Arak Uni Med Sci. 2015;17(12):64–74.
  25. Filov VA, editor. Vrednye himicheskie veshhestva. Neorganicheskie soedinenija jelementov V–VII grupp. Leningrad: Himija; 1989. 593 p. (In Russ).
  26. Sizova EA, Miroshnikov SA, Kalashnikov VV. Morphological and biochemical parameters in Wistar rats influenced by molybdenum and its oxide nanoparticles. Sel’skokhozyaistvennaya biologia [Agricultural Biology]. 2016;51(6):929–936. (In Russ). doi: 10.15389/agrobiology.2016.6.929rus
  27. Kapp JrRW. Molybdenum. In: Wexler P, editor. Encyclopedia of Toxicology. 3rd edition. Elsevier Inc.; 2014. P. 383–388.
  28. Lebedev S, Yausheva E, Galaktionova L, Sizova E. Impact of molybdenum nanoparticles on survival, activity of enzymes, and chemical elements in Eisenia fetida using test on artificial substrata. Environ Sci Pollut Res Int. 2016;23(18):18099–18110. doi: 10.1007/s11356-016-6916-6
  29. Messer RL, Lucas LC. Localization of metallic ions with gingival fibroblast subcellular fractions. J Biomed Mater Res. 2002;59(3):466–472. doi: 10.1002/jbm.1262
  30. Indrakumar J, Korrapati PS. Steering efficacy of nano molybdenum towards cancer: mechanism of action. Biol Trace Elem Res. 2020;194(1):121–134. doi: 10.1007/s12011-019-01742-2
  31. Božinović K, Nestić D, Centa UG, et al. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology. 2020;444:152564. doi: 10.1016/j.tox.2020.152564
  32. Anh Tran T, Krishnamoorthy K, Song YW, et al. Toxicity of nano molybdenum trioxide toward invasive breast cancer cells. ACS Appl Mater Interfaces. 2014;6(4):2980–2986. doi: 10.1021/am405586d
  33. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–419. doi: 10.1093/toxsci/kfi256
  34. Fakhri A, Nejad PA. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J Photochem Photobiol B. 2016;159:211–217. doi: 10.1016/j.jphotobiol.2016.04.002
  35. Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–983. doi: 10.1016/j.tiv.2005.06.034
  36. Masjedi-Arani M, Amiri M, Amiri O, et al. Glioma cells eradication by photoexcitation of bioengineered molybdenum trioxide nanoparticles synthesized by wet chemical and microwave route: dose dependent photosensitizer bioactivity. Int J Pharm. 2020;591:120021. doi: 10.1016/j.ijpharm.2020.120021
  37. Bao T, Yin W, Zheng X, et al. One-pot synthesis of PEGylated plasmonic MoO(3-x) hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials. 2016;76:11–24. doi: 10.1016/j.biomaterials.2015.10.048
  38. Fazelipour S, Assadi F, Tootian Z, et al. Effect of molybdenum trioxide nanoparticles on histological changes of uterus and biochemical parameters of blood serum in rat. Comp Clin Pathol. 2020;29:991–999. doi: 10.1007/s00580-020-03137-5
  39. Asadi F, Fazelipour S, Abbasi RH, et al. Assessment of ovarian follicles and serum reproductive hormones in molybdenum trioxide nanoparticles treated rats. Int J Morphol. 2017;35(4):1473–1481.
  40. Stepankov MS. Issledovanie i ocenka pokazatelej krovi krys pri mnogokratnoj peroral'noj jekspozicii nanochasticami oksida molibdena (VI). In: Materialy Vserossijskoj nauchno-prakticheskoj internet-konferencii molodyh uchjonyh i specialistov Rospotrebnadzora «Fundamental'nye i prikladnye aspekty analiza riska zdorov'ju naselenija», 2021 Okt 11–15; Perm. P. 218–223. (In Russ).
  41. Baumerte A, Sakale G, Zavickis J, et al. Comparison of effects on crustaceans: carbon nanoparticles and molybdenum compounds nanowires. J Phys: Conf Ser. 2013;429:012041.
  42. Stepankov MS. Izuchenie ostroj toksichnosti i kumuljativnyh svojstv nanochastic oksida molibdena (VI) pri peroral'nom vozdejstvii. In: Materialy Vserossijskoj nauchno-prakticheskoj internet-konferencii molodyh uchjonyh i specialistov Rospotrebnadzora «Fundamental'nye i prikladnye aspekty analiza riska zdorov'ju naselenija». 2021 Okt 11–15; Perm. P. 215–218. (In Russ).
  43. https://monographs.iarc.who.int/ [Internet]. List of classifications. International agency for research on cancer [updated 2021 Sep 15]. Available from: https://monographs.iarc.who.int/list-of-classifications.
  44. Zuo Y, Xiang B, Yang J, et al. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res. 2009;19(4):449–457. doi: 10.1038/cr.2009.19
  45. Li D, Ueta E, Kimura T, et al. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95(8):644–650. doi: 10.1111/j.1349-7006.2004.tb03323.x
  46. Malova IJu. Obshhee uchenie o distrofijah : uchebno-metodicheskoe posobie dlja studentov medicinskih vuzov, ordinatorov i vrachej. Majkop: MGTU; 2014. 60 p. (In Russ).
  47. Hautekeete ML, Degott C, Benhamou JP. Microvesicular steatosis of the liver. Acta Clin Belg. 1990;45(5):311–326. doi: 10.1080/17843286.1990.11718105
  48. Li Z, Berk M, McIntyre TM, et al. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47(5):1495–1503. doi: 10.1002/hep.22183
  49. Jakovenko JeP, Agafonova NA, Grigor'eva VP. Metabolicheskie zabolevanija pecheni: nealkogol'nyj steatoz i steatogepatit. Diagnostika i lechenie. Kachestvo zhizni. Medicina. 2004;2(5):53–59. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Radiograph of МоО3: а — nanodispersed, b — microdispersed.

Download (280KB)
3. Fig. 2. SEM-image of nano- (а) and microparticles (b) of МоО3 using scanning electron microscopy (arrows indicate particle sizes), (um — µm).

Download (282KB)

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies