Nanoparticles and nanomaterials as inevitable modern toxic agents. Review. Part 3. Influence of nanoparticles on brain and behavior. Conclusions and unsolved problems

Cover Page

Cite item

Full Text

Abstract

The final part of the review focuses on the existing methods and results of studying the effects of nanoparticles (NPs) on the brain and behavior. The types of behavioral tests used to assess changes in the behavior of NP-treated animals are described. The data accumulated in the literature on the negative influence of NPs on animal brains exposed to NPs in adulthood are considered. The signs of different cellular and tissue damage are presented, such as development of oxidative stress in the brain, inflammation and swelling, disturbances in the structure of cells, and an increase in the permeability of the blood–brain barrier. Disturbances in spatial memory, working, and long-term reference memory, decreased propensity for social interactions, inhibition of exploratory behavior, depression and anxiety, and impaired motor coordination, were found after various types and duration of contact of animals with NPs. The accumulated information about the negative consequences of prenatal and early postnatal, during lactation, for example, contact with NPs for mature offspring, is also described. Various cellular and tissue damage is found in the brain of young animals, such as the inhibition of cell proliferation, an increase in the number of cells undergoing apoptosis, edema and vascular degeneration, a decrease in the expression of genes associated with neurogenesis, and numerous signs of the development of oxidative stress. Behavioral disturbances in adult animals that had contact with NPs in early ontogenesis are considered, such as manifestations of depressive behavior or increased anxiety and suppression of spatial and short-term memory. Contradictory results of studies about contact with NPs in both adulthood and early ontogenesis are also presented. In conclusion, unresolved issues are highlighted, and general conclusions on the review are given.

About the authors

Aleksandra L. Ivlieva

Moscow regional research and clinical institute named after M.F. Vladimirsky

Email: ivlieva@medphyslab.com
SPIN-code: 5555-1343

researcher (Biology)

Russian Federation, 61/2 Schepkin street, 129110, Moscow

Inga Zinicovscaia

Joint Institute for nuclear research

Email: zinikovskaia@mail.ru
ORCID iD: 0000-0003-0820-887X
SPIN-code: 6814-1720

Dr. Sci. (Chem.)

Russian Federation, Dubna

Elena N. Petritskaya

Moscow regional research and clinical institute named after M.F. Vladimirsky

Email: medphys@monikiweb.ru
ORCID iD: 0000-0002-3836-0103
SPIN-code: 2641-3111

Cand. Sci. (Biol.)

Russian Federation, 61/2 Schepkin street, 129110, Moscow

Dmitry A. Rogatkin

Moscow regional research and clinical institute named after M.F. Vladimirsky

Author for correspondence.
Email: d.rogatkin@monikiweb.ru
ORCID iD: 0000-0002-7755-308X
SPIN-code: 9130-8111
http://www.medphyslab.ru

Dr. Sci. (Techn.), associate professor

Russian Federation, 61/2 Schepkin street, 129110, Moscow

References

  1. Order of the Ministry of Health of the Russian Federation of April 30, 2013 N 281 «Ob utverzhdenii nauchnykh platform meditsinskoi nauki». Available from: https://www.garant.ru/products/ipo/prime/doc/70278972/ (In Russ).
  2. OECD test guidelines for chemicals. Avalable from: https://www.oecd.org/env/ehs/testing/oecdguidelinesforthetestingofchemicals.htm
  3. Ivlieva AL, Petritskaya EN, Lopatina MV, Rogatkin DA, Zinicovscaia I. Evaluation of the cognitive abilities of mice exposed to silver nanoparticles during prenatal development and lactation. In: Cognitive modeling: proceedings of the Seventh international cognitive modeling forum. Rostov-on-Don: Science and Education Foundation; 2019. P. 276–282. (In Russ).
  4. Aijie Ch, Huimin L, Jia L, et al. Central neurotoxicity induced by the instillation of ZnO and TiO2 nanoparticles through the taste nerve pathway. Nanomedicine (Lond.). 2017;12(20):2453–2470. doi: 10.2217/nnm-2017-0171
  5. Davenport LL, Hsieh H, Eppert BL, et al. Systemic and behavioral effects of intranasal administration of silver nanoparticles. Neurotoxicol Teratol. 2015;51:68–76. doi: 10.1016/j.ntt.2015.08.006
  6. Ghaderi Sh, Tabatabaei SRF, Varzi HN, Rashno M. Induced adverse effects of prenatal exposure to silver nanoparticles on neurobehavioral development of offspring of mice. J Toxicol Sci. 2015;40(2):263–275. doi: 10.2131/jts.40.263
  7. Greish K, Alqahtani AA, Alotaibi AF, et al. The effect of silver nanoparticles on learning, memory and social interaction in BALB/C mice. Int J Environ Res Public Health. 2019;16(1):148. doi: 10.3390/ijerph16010148
  8. Ivlieva AL, Demin VA, Petritskaya EN, Antsiferova AA. Preliminary results on the impact of nanoparticles on brain functioning. Materials today: proceedings. 2017;4(7):6901–6907. doi: 10.1016/j.matpr.2017.07.09.
  9. Liu P, Huang Zh, Gu N. Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf. 2013;87:124–130. doi: 10.1016/j.ecoenv.2012.10.014
  10. Mohammadipour A, Fazel A, Haghir H, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ Toxicol Pharmacol. 2014;37(2):617–625. doi: 10.1016/j.etap.2014.01.014
  11. Ivlieva AL, Petritskaya EN, Rogatkin DA, Demin VA. Methodological features of the use of the Morris water labyrinth for the assessment of cognitive functions in animals. Russian Physiological Journal named after I.M. Sechenov. 2016;102(1);3–17. (In Russ).
  12. Hritcu L, Stefan M, Ursu L, et al. Exposure to silver nanoparticles induces oxidative stress and memory deficit in laboratory rats. Open Life Sciences. 2011;6(4):497–509. doi: 10.2478/s11535-011-0022-z
  13. Hu R, Zheng L, Zhang T, et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater. 2011;191(1-3):32–40. doi: 10.1016/j.jhazmat.2011.04.027
  14. Gorina YaV, Lopatina OL, Komleva YuK, et al. Eight-arm radial maze as a tool for assessing spatial learning and memory in mice. Siberian medical review. 2016;(5):46–52. (In Russ).
  15. Cui Y, Chen X, Zhou Z, et al. Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats. Chemosphere. 2014;96:99–104. doi: 10.1016/j.chemosphere.2013.07.051
  16. Dabrowska-Bouta B, Zieba M, Orzelska-Gorka J, et al. Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats. Toxicology. 2016;363–364:29–36. doi: 10.1016/j.tox.2016.07.007
  17. Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. 2017;(126):e55718. doi: 10.3791/55718
  18. Antsiferova A, Kopaeva M, Kashkarov P. Effects of prolonged silver nanoparticle exposure on the contextual cognition and behavior of mammals. Materials (Basel). 2018;11(4):558. doi: 10.3390/ma11040558
  19. Ben Younes NR, Amara S, Mrad I, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res Int. 2015;22(11):8728–8737. doi: 10.1007/s11356-014-4002-5
  20. Dănilă O-O, Berghian AS, Dionisie V, et al. The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring Wistar rats. Nanomedicine (Lond). 2017;12(12):1455–1473. doi: 10.2217/nnm-2017-0029
  21. Engler-Chiurazzi EB, Stapleton PA, Stalnaker JJ, et al. Impacts of prenatal nanomaterial exposure on male adult Sprague Dawley rat behavior and cognition. J Toxicol Environ Health A. 2016;79(11):447–452. doi: 10.1080/15287394.2016.1164101
  22. Javurek AB, Suresh D, Spollen WG, et al. Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Sci Rep. 2017;7(1):2822. doi: 10.1038/s41598-017-02880-0
  23. Tabatabaei SRF, Moshrefi M, Askaripour M. Prenatal exposure to silver nanoparticles causes depression like responses in mice. Indian J Pharm Sci. 2015;77(6):681–686. doi: 10.4103/0250-474x.174983
  24. Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-Bideskan A. The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. Iran J Basic Med Sci. 2019;22(7):745–751. doi: 10.22038/ijbms.2019.33611.8018
  25. File SE, Seth P. A review of 25 years of the social interaction test. European journal of pharmacology. 2003;463(1-3):35–53. doi: 10.1016/S0014-2999(03)01273-1
  26. Kim E-M, Palmer P, Howard V, et al. Effect of intracerebroventricular injection of TiO2 nanoparticles on complex behavior in the rat. J Nanosci Nanotechnol. 2013;13(12):8325–8330. doi: 10.1166/jnn.2013.8217
  27. Krawczynska A, Dziendzikowska K, Gromadzka-Ostrowska J, et al. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renine-angiotensin system in brain. Food Chem Toxicol. 2015;85: 96–105. doi: 10.1016/j.fct.2015.08.005
  28. Moradi-Sardareh H, Basir HRG, Hassan ZM, et al. Toxicity of silver nanoparticles on different tissues of Balb/C mice. Life Sci. 2018;211:81–90. doi: 10.1016/j.lfs.2018.09.001
  29. Sharma A, Muresanu DF, Lafuente JV, et al. Sleep deprivation-induced blood-brain barrier breakdown and brain dysfunction are exacerbated by size-related exposure to Ag and Cu nanoparticles. Neuroprotective effects of a 5-HT3 receptor antagonist ondansetron. Mol Neurobiol. 2015;52(2):867–881. doi: 10.1007/s12035-015-9236-9
  30. Fraga S, Brandão A, Soares ME, et al. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine. 2014;10(8):1757–1766. doi: 10.1016/j.nano.2014.06.005
  31. Kreyling WG, Moeller W, Holzwarth U, et al. Age-dependent rat lung deposition patterns of inhaled 20 nanometer gold nanoparticles and their quantitative biokinetics in adult rats. ACS Nano. 2018;12(8):7771–7790. doi: 10.1021/acsnano.8b01826
  32. Li X, Hu Z, Ma J, et al. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf B Biointerfaces. 2018;167:260–266. doi: 10.1016/j.colsurfb.2018.04.005
  33. Takeuchi I, Nobata S, Oiri N, Tomoda K, Makino K. Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: effects of particle size. Biomed Mater Eng. 2017;28(3):315–323. doi: 10.3233/BME-171677
  34. Uma Suganya KS, Govindaraju K, Sivaraman D, et al. Nanotoxicity assessment of functionalized gold nanoparticles in Sprague–Dawley rats. Journal of cluster science. 2017;28(5):2933–2951. doi: 10.1007/s10876-017-1269-y
  35. Lee U, Yoo C-J, Kim Y-J, Yoo Y-M. Cytotoxicity of gold nanoparticles in human neural precursor cells and rat cerebral cortex. J Biosci Bioeng. 2016;121(3):341e344. doi: 10.1016/j.jbiosc.2015.07.004
  36. Grissa I, ElGhoul J, Mrimi R, et al. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain Res Bull. 2020;155:119–128. doi: 10.1016/j.brainresbull.2019.10.005
  37. Krivova NA, Khodanovich MYu, Zamoshchina TA, et al. The influence of the titanium dioxide on some functions of central nervous system of rats. Bulletin of the Tomsk state university. Biology. 2011;2(14):96–109. (In Russ).
  38. Ivlieva AL, Petritskaya EN. Preserving the memory of the passage of the Morris water maze four months after testing. In: Cognitive Modeling: Proceedings of the Fifth International Forum on Cognitive Modeling. Rostov-on-Don: Science and Education Foundation; 2017. P. 298–303. (In Russ).
  39. Ivlieva AL, Petritskaya EN, Lopatina MV. Preliminary data on the effect of nanoparticles on the cognitive abilities of young animals. In: Cognitive Modeling: Proceedings of the Sixth International Forum on Cognitive Modeling. Rostov-on-Don: Science and Education Foundation; 2018. P. 280–285. (In Russ).
  40. Ivlieva AL, Petritskaya EN, Rogatkin DA, et al. Impact of chronic oral administration of silver nanoparticles on cognitive abilities of mice. Physics of particles and nuclei letters. 2021;18(2):250–265. doi: 10.1134/S1547477121020072
  41. Khan HA, Alamery S, Ibrahim KE, et al. Size and time-dependent induction of proinflammatory cytokines expression in brains of mice treated with gold nanoparticles. Saudi J Biol Sci. 2019;26(3):625–631. doi: 10.1016/j.sjbs.2018.09.012
  42. Ferreira GK, Cardoso E, Vuolo FS, et al. Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater Sci Eng C Mater Biol Appl. 2017;79:748–755. doi: 10.1016/j.msec.2017.05.110
  43. Tuna BG, Yesilay G, Yavuz Y, et al. Electrophysiological effects of polyethylene glycol modified gold nanoparticles on mouse hippocampal neurons. Heliyon. 2020;6(12):e05824. doi: 10.1016/j.heliyon.2020.e05824
  44. Sanati M, Khodagholi F, Aminyavari S, et al. Impact of gold nanoparticles on amyloid β-Induced Alzheimer’s disease in a rat animal model: involvement of STIM proteins. ACS Chemic Neurosci. 2019;10(5):2299–2309. doi: 10.1021/acschemneuro.8b00622
  45. Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun. 2020;11(1):4790. doi: 10.1038/s41467-020-18525-2
  46. Fatemi M. The effects of indirect exposure of nanosilver on caspase-8 and caspase-9 levels in liver and brain of suckling rats. Nanomed J. 6(3):176–182. doi: 10.22038/NMJ.2019.06.00004
  47. Naserzadeh P, Ghanbary F, Ashtari P, et al. Biocompatibility assessment of titanium dioxide nanoparticles in mice fetoplacental unit. J Biomed Mater Res A. 2018;106(2):580–589. doi: 10.1002/jbm.a.36221
  48. Fatemi M, Roodbari NH, Ghaedi K, Naderi G. The effects of prenatal exposure to silver nanoparticles on the developing brain in neonatal rats. Journal of Biological Research. 2013;20:233.
  49. Zhou Y, Hong F, Tian Y, et al. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicol Res (Camb). 2017;6(6):889–901. doi: 10.1039/c7tx00153c
  50. Zhou Y, Ji J, Chen Ch, Hong F. Retardation of axonal and dendritic outgrowth is associated with the MAPK signaling pathway in offspring mice following maternal exposure to nanosized titanium dioxide. J Agric Food Chem. 2019;67(9):2709−2715. doi: 10.1021/acs.jafc.8b06992
  51. Bideskan AE, Mohammadipour A, Fazel A, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis. Exp Toxicol Pathol. 2017;69(6):329–337. doi: 10.1016/j.etp.2017.02.006
  52. Zhao G, Wang Z, Xu L, Xia C-X, Liu J-X. Silver nanoparticles induce abnormal touch responses by damaging neural circuits in zebrafish embryos. Chemosphere. 2019;229:169–180. doi: 10.1016/j.chemosphere.2019.04.223
  53. Morishita Y, Yoshioka Y, Takimura Y, et al. Distribution of silver nanoparticles to breast milk and their biological effects on breast-fed offspring mice. ACS Nano. 2016;10(9):8180–8191. doi: 10.1021/acsnano.6b01782
  54. Petritskaya EN, Abaeva LF, Rogatkin DA, Shumskii VI, Lipatova VA, Kutsev SI, Botchei VM. Some manifestations of cardiotoxicity of gold nanoparticles. Nanotechnics. 2014;3(36):38–42. (In Russ).
  55. Petritskaya EN, Abaeva LF, Rogatkin DA, Litvinova KS, Bobrov MA. On the problem of silver nanoparticles toxicity after oral administration of colloidal solution. Almanac of Clinical Medicine. 2011;(25):9–12. (In Russ).
  56. Petritskaya EN, Abaeva LF, Rogatkin DA. Some aspects of the toxicity of silver nanoparticles in an experiment with adult mice after oral administration of colloidal solutions. Nanotechnics. 2013;(1):108–112. (In Russ).

Copyright (c) 2022 Ivlieva A.L., Zinicovscaia I., Petritskaya E.N., Rogatkin D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies