T-cell receptor family, signal transduction, and transcription factors in T-cell immune response
- 作者: Moskalev A.V.1, Cygan B.Y.1, Apchel V.Y.1,2, Cygan V.N.1
-
隶属关系:
- Kirov Military Medical Academy
- Herzen State Pedagogical University of Russia
- 期: 卷 27, 编号 1 (2025)
- 页面: 135-146
- 栏目: Review
- URL: https://journals.rcsi.science/1682-7392/article/view/292172
- DOI: https://doi.org/10.17816/brmma636850
- ID: 292172
如何引用文章
详细
This study investigated signal transduction in T-lymphocytes, whose cell receptors are categorized into several groups based on their signaling mechanisms and the intracellular biochemical pathways they activate, including modular signaling proteins and adapter molecules that perform scaffolding or catalytic functions. Adapter proteins facilitate signaling complexes by linking various enzymes. Immune receptors, which are composed of integral membrane proteins from the immunoglobulin superfamily, interact with specific tyrosine-containing motifs within transmembrane signaling proteins in their cytoplasmic domains. The intensity of T-cell receptor signaling influences the development and activation of T-lymphocytes. Signal transduction is regulated by coreceptor activation and suppressed by inhibitory receptors. The interaction between T-cell receptors and major histocompatibility complex molecules induces coreceptor clustering and tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs within the cluster of differentiation 3 complex. Protein and lipid phosphorylation is a key regulatory mechanism in T-cell receptor and coreceptor signaling. Activated zeta-chain-associated protein kinase 70 phosphorylates adapter proteins, promoting interactions with downstream signaling molecules. G-proteins stimulate mitogen-activated protein kinases, which activate transcription factors. Phospholipase C activates T-cell transcription factors, resulting in enhanced gene transcription. T-cell receptor signal modulation is mediated by protein tyrosine phosphatases, which dephosphorylate tyrosine residues on signaling proteins, inhibiting T-cell receptor-mediated signal transduction.
作者简介
Alexander V. Moskalev
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0004-5659-7464
SPIN 代码: 8227-2647
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgBoris Yu. Cygan
Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
SPIN 代码: 3428-7704
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgVasiliy Ya. Apchel
Kirov Military Medical Academy; Herzen State Pedagogical University of Russia
Email: apchelvya@mail.com
ORCID iD: 0000-0001-7658-4856
SPIN 代码: 4978-0785
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint Petersburg; Saint PetersburgVasiliy N. Cygan
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1199-0911
SPIN 代码: 7215-6206
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint Petersburg参考
- Courtney AH, Lo WL, Weiss A. TCR signaling: mechanisms of initiation and propagation. Trends Biochent Sci. 2018;43(2):108–123. doi: 10.1016/j.tibs.2017.11.008
- Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signalling. Nat Rev Immunol. 2018;18(8):485–497. doi: 10.1038/s41577-018-0020-8
- Pershin DE. Development and assessment of the significance of the method for determining the expression of intracellular proteins in the diagnosis and monitoring of patients with congenital defects of immunity [dissertation]. Moscow; 2023. 123 p. (In Russ.) EDN: JKMKOR
- Geltink RIK, Kyle RL, Pearce EL. Unraveling the complex interplay between T cell metabolism and function. AnHU Rev Immunol. 2018;36:461–488. doi: 10.1146/annurev-immunol-042617-053019
- Man K, Rallies A. Synchronizing transcriptional control of T cell metabolism and function. Nat Rev Immunol. 2015;15(9):574–584. doi: 10.1038/nri3874
- Mariuzza RA, Agnihotri P, Orban J. The structural basis of T-cell receptor (TCR) activation: an enduring enigma. J Biol Chem. 2020;295(4):914–925. EDN: IUHDNU doi: 10.1074/jbc.REV119.009411
- Zavyalova MG. Targeted mass-spectrometric analysis of protein phosphorylation. [dissertation]. Moscow; 2020. 132 p. (In Russ.)
- Chu N, Salguero AL, Liu AZ, et al. Akt-kinase activation mechanisms revealed using protein semisynthesis. Cell. 2018;174(4):897–907.e14. doi: 10.1016/j.cell.2018.07.003
- Shestakova EA. Еstrogen receptor α (ESR1) AND SRC family kinase (LYN) gene’s mutations associated with ovarian cancer endocrine therapy resistance. Advances in Molecular Oncology. 2021;8(1):10–16. EDN: LBNNRL doi: 10.17650/2313-805X-2021-8-1-1-10-16
- Grebennikova TA, Belaya ZhE, Rozhinskaya LYa, et al. The canonical wnt/β-catenin pathway: from the history of its discovery to clinical application. Therapeutic archive. 2016;88(10):74–81. EDN: WWYDIZ doi: 10.17116/terarkh201688674-81
- Dovzhikova IV, Andrievskaya IA. Estrogen receptors (review). Part 1. Bulletin of physiology and pathology of respiration. 2019;(72):120–127. EDN: WDQNKP doi: 10.12737/article_5d0ad2e5d54867.15780111
- Shvedova MV, Anfinogenova YaD, Popov SV, et al. С-jun N-terminal kinases and their modulators in myocardial ischemia/reperfusion injury (review). Siberian Medical Journal (Tomsk). 2016;31(3):7–15. EDN: XHJSED
- Vorobyeva NV. Participation of nonreceptor src family tyrosine kinases in the formation of neutrophil extracellular traps. Herald of Moscow University. Series 16. Biology. 2023;78(1):11–16. EDN: OXUINQ doi: 10.55959/MSU0137-0952-16-78-1-2
- Loginova MM. Role of neuronal kinases in the adaptation of the central nervous system to the impact of ischemia factors. [dissertation]. Nizhny Novgorod; 2022. 152 p. (in Russ.)
- Kuznetsova LA, Basova NE. The role of the neural NO-synthase adapter protein in the pathogenesis of metabolic syndrome and type 2 diabetes mellitus. Siberian Scientific Medical journal. 2023;43(5): 34–39. EDN: CSCJDK doi: 10.8699/SSMJ20230504
- Gnedina OO, Morshneva AV, Igotti MV. Role of map kinases in induced phosphorylation of histone h2ax in transformed cells. Cytology. 2023;65(1):54–63. EDN: GOTCEB doi: 10.31857/S0041377123010030
- Zhao J, Li L, Feng X, et al. T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain as a promising immune checkpoint target for the treatment of SLE. Lupus. 2024;33(3):209–216. EDN: ZHNMAF doi: 10.1177/09612033241226536
- Murai VM, Smirnov EYu, Varlev NA. Mechanisms of immune checkpoint blockade in anti-tumor therapy. Cytology. 2019;61(8): 597–621. EDN: ZCAHGY doi: 10.1134/S0041377119080030
- Abul K, Abbas, Lichtman AH, et al. Cellular and molecular immunology. 10th edition. Philadelphia: Elsevier Health Sciences; 2022. 587 p.
- Urban VA, Veresov VG. Structural basis of ZAP-70 activation upon phosphorylation of tyrosines 315, 319 and 493. Biology. 2023;67(1): 38–40. EDN: QCWQJG doi: 10.29235/1561-8323-2023-67-1-38-40
- Shapoval AI. New kostimulatory molecules of the B7 family and the role of costimulation in the activation of NK cells. [dissertation]. Novosibirsk; 2019. 219 p. (In Russ.) EDN: FKNCWT
- Kruglova NA. Participation of phosphatase-associated lymphocyte phosphoprotein (LPAP) in T-cell activation processes. [dissertation]. Moscow; 2019. 140 p. (In Russ.) EDN: BAUGGM
- Senichkin VV. Regulation of Mcl-1 to increase the sensitivity of tumor cells to apoptosis. [dissertation]. Moscow; 2018. 158 p. (In Russ.) EDN: UYKCID
- Trebak M, Kinet JP. Calcium signalling in T cells. Nat Rev Immunol. 2019;19(3):154–169. doi: 10.1038/s41577-018-0110-7
- Mazurov VI, Belyaeva IB. Clinical significance of Janus kinase inhibitors in the therapy of rheumatoid arthritis: achievements and prospects. Modern Rheumatology Journal. 2019;13(4):116–123. EDN: GMOZWO doi: 10/14412/1996-7012-2019-4-116-123
- Tyshchuk EV, Mikhailova VA, Selkov SA, et al. Natural killers: origin, phenotype, functions. Medical Immunology (Russia). 2021;23(6): 1207–1228. EDN: QILUOK doi: 10.15789/1563-0625-NKC-2330
- Plekhova NG, Somova LM, Drobot EI, et al. The functional activity of innate immunity cells in bacterial infection on background of thermal stress. Russian Journal of Infection and Immunity. 2018;8(1): 43–53. EDN: YWERYV doi: 10.15789/2220-7619-2018-1-43-53
- Paturi S, Deshmukh MA Glimpse of «dicer biology» through the structural and functional perspective. Front Mol Biosci. 2021;8:643657. EDN: QKOCPL doi: 10.3389/ fmolb.2021.643657
- Lyapunova LS, Tashireva LA, Perelmuter VM. Follicular T-helper lymphocytes and their significance in cancer. Problems in Oncology. 2017;63(6):824–835. EDN: ZXWFDL
- Anokhina EM. Clinical and immunological aspects of anti-CTLA-4 therapy of disseminated melanoma. [dissertation abstract]. Saint Petersburg; 2019. 30 p. (In Russ.) EDN: OSLCFX
- Voronina EV. Maturation of T-follicular helpers in in vitro models and in Helicobacter pylori infection in vivo. [dissertation]. Nizhny Novgorod; 2019. 167 p. (In Russ.) EDN: MTVHTM
- Kotikova AI, Blinova EA, Akleev AV. Subpopulation composition of T-helpers in peripheral blood of persons chronically exposed to radiation in the long term. Extreme Medicine. 2022;24(2):65–74. (In Russ.) EDN: MXUVFS doi: 10.47183/mes.2022.018 EDN: MXUVFS
- Khavinson VKh. Peptides, genome, aging. Moscow; 2020. 58 p. (In Russ.) EDN: UCSFZP
- Vakhitov TYa, Kudryavtsev IV, Sall TS, et al. T helper cell subsets, key cytokines and chemokines in the pathogenesis of inflammatory bowel disease (part 1). Clinical Practice in Pediatrics. 2020;15(6): 67–78. EDN: ATNWWJ doi: 10.20953/1817-7646-2020-6-67-78
- Volkov DV, Stepanova VM, Rubtsov YuP, et al. Protein tyrosine phosphatase CD45 as an immunity regulator and a potential effector of CAR-T therapy. Acta Nature. 2023;15(3):17–26. EDN: HQMECT doi: 10.32607/actanaturae.25438
- Mironova NL. Mechanisms of suppression of progression of experimental tumors under the influence of dendritic cells and natural nucleases. [dissertation]. Novosibirsk; 2018. 317 p. (In Russ.) EDN: QXWZOD
- Bogdanov AA, Vysochinskaya VV. Prospects for the use of small interfering RNAs as inhibitors of immune checkpoints for immunotherapy in oncology. Practical oncology. 2021;22(3):204–217. EDN: PBXSRD doi: 10.31917/2203204
- Stavinskaya OA, Dobrodeeva LK, Patrakeeva VP. Associations between blood concentrations of cytotoxic CD8+ cells and lymphocyte apoptosis in healthy humans. Human ecology. 2021;(9):4–10. EDN: JYPZAX doi: 10.33396/1728-0869-2021-9-4-10
- Zhang Q, Li S, Patterson C, et al. Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis. Mol Pharmacol. 2013;83(1):217–224. doi: 10.1124/mol.112.082065
- Chetina EV, Kashevarova NG, Sharapova EP. Functions of the mTOR signaling pathway in normal articular cartilage chondrocytes and in osteoarthritis. Rheumatology Science and Practice. 2016;54(6):590–597. EDN: YUAXXT doi: 10.14412/1995-4484-2016-590-597
- Gutner UA, Shulik MA. The role of sphingosine-1-phosphate in neurodegenerative diseases. Russian Journal of Bioorganic Chemistry. 2021;47(6):702–720. EDN: BKTASX doi: 10.31857/S0132342321050274
- Young BD, Sha J, Vashisht AA, et al. Human multi-subunit ubiquitin ligase E3 required for ubiquitination β subunit of heterotrimeric G protein and subsequent signaling. J Proteome Res. 2021;20(9):4318–4330. EDN: GVLRJE doi: 10.1021/acs.jproteome.1c00292
- Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2016;62(5):496–509. EDN: WTOPSV doi: 10.18097/RVMS20166205496
- Artemenkov AA. Cytokine-mediated dysregulation of antiviral immune response upon infection with SARS-COV-2 (review). Journal of Medical and Biological Research. 2023;11(3):329–340. EDN: KCZHSM doi: 10.37482/2687-1491-Z148
- Oskina NA, Shcherbakov AM, Ovchinnikova LK, et al. Role of phosphatidylinositol-3-kinase in carcinogenesis. Oncology issues. 2017;63(4):545–556. EDN: ZDWSQZ
- Stаlhammar ME, Hаkansson LD, Sindelar R. Bacterial N-formyl peptides reduce PMA- and Escherichia coli-induced neutrophil respiratory burst in term neonates and adults. Scand J Immunol. 2017;85(5):365–371. doi: 10.1111/sji.12537
- Kropocheva E.V. Study of new programmable nucleases from the family of bacterial proteins-Argonauts. [dissertation abstract]. Moscow; 2022. 28 p. (In Russ.) EDN: UPZNBW
- Moiseenko FV, Moiseenko VM. Resistance to targeted therapy. Practical oncology. 2021;22(2):138–164. EDN: MQRWUQ doi: 10.31917/2202138
- Roppelt AA, Yukhacheva DV, Myakova NV, et al. X-Linked lymphoproliferative syndrome types 1 and 2 (review of literature and clinical case reports). Pediatric Hematology/Oncology and Immunopathology. EDN: WFFZOX doi: 10.20953/1726-1708-1-17-26
- Moskalev AV, Rudoy AS, Apchel AV, et al. Features of biology of transforming growth factor β and immunopathology. Bulletin of the Russian Military Medical Academy. 2016;54(2):206–216. EDN: WDCIQN
- Fenyuk BA. Mechanisms of conjugation and regulation of proton-dependent ATP-synthase of bacteria [dissertation]. Moscow; 2022. 253 p. (In Russ.) EDN: KFEHDY
- Severyanova LA, Dolgintsev ME. The modern concept of L-lysine action on the nervous and immune regulator systems. Humans and their health. 2007;(2):67–79. EDN: JCELKA
- Kropacheva EV, Lisitskaya LA, Agapov AA. Prokaryotic argonaut proteins as a tool of biotechnology. Molecular biology. 2022;56(6): 915–936. EDN: UPZNBW doi: 10.31857/S0026898422060131
- Novokreshchennykh EE, Kolodkina AA, Bezlepkina OB. DICER 1 syndrome: clinical variety endocrine manifestations and features of diagnostics. Problems of endocrinology. 2024;70(2):78–85. EDN: SQMQPD doi: 10.14341/probl13383
- Mishra S, Brady LJ. The cytoplasmic domains of Streptococcus mutans membrane protein insertases YidC1 and YidC2 confer unique structural and functional attributes to each paralog. Front Microbiol. 2021;12:760873. EDN: ODWVDT doi: 10.3389/fmicb.2021.760873
补充文件
