T-cell receptor family, signal transduction, and transcription factors in T-cell immune response

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study investigated signal transduction in T-lymphocytes, whose cell receptors are categorized into several groups based on their signaling mechanisms and the intracellular biochemical pathways they activate, including modular signaling proteins and adapter molecules that perform scaffolding or catalytic functions. Adapter proteins facilitate signaling complexes by linking various enzymes. Immune receptors, which are composed of integral membrane proteins from the immunoglobulin superfamily, interact with specific tyrosine-containing motifs within transmembrane signaling proteins in their cytoplasmic domains. The intensity of T-cell receptor signaling influences the development and activation of T-lymphocytes. Signal transduction is regulated by coreceptor activation and suppressed by inhibitory receptors. The interaction between T-cell receptors and major histocompatibility complex molecules induces coreceptor clustering and tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs within the cluster of differentiation 3 complex. Protein and lipid phosphorylation is a key regulatory mechanism in T-cell receptor and coreceptor signaling. Activated zeta-chain-associated protein kinase 70 phosphorylates adapter proteins, promoting interactions with downstream signaling molecules. G-proteins stimulate mitogen-activated protein kinases, which activate transcription factors. Phospholipase C activates T-cell transcription factors, resulting in enhanced gene transcription. T-cell receptor signal modulation is mediated by protein tyrosine phosphatases, which dephosphorylate tyrosine residues on signaling proteins, inhibiting T-cell receptor-mediated signal transduction.

作者简介

Alexander V. Moskalev

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0004-5659-7464
SPIN 代码: 8227-2647

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Boris Yu. Cygan

Kirov Military Medical Academy

编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
SPIN 代码: 3428-7704

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Vasiliy Ya. Apchel

Kirov Military Medical Academy; Herzen State Pedagogical University of Russia

Email: apchelvya@mail.com
ORCID iD: 0000-0001-7658-4856
SPIN 代码: 4978-0785

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Vasiliy N. Cygan

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1199-0911
SPIN 代码: 7215-6206

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Courtney AH, Lo WL, Weiss A. TCR signaling: mechanisms of initiation and propagation. Trends Biochent Sci. 2018;43(2):108–123. doi: 10.1016/j.tibs.2017.11.008
  2. Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signalling. Nat Rev Immunol. 2018;18(8):485–497. doi: 10.1038/s41577-018-0020-8
  3. Pershin DE. Development and assessment of the significance of the method for determining the expression of intracellular proteins in the diagnosis and monitoring of patients with congenital defects of immunity [dissertation]. Moscow; 2023. 123 p. (In Russ.) EDN: JKMKOR
  4. Geltink RIK, Kyle RL, Pearce EL. Unraveling the complex interplay between T cell metabolism and function. AnHU Rev Immunol. 2018;36:461–488. doi: 10.1146/annurev-immunol-042617-053019
  5. Man K, Rallies A. Synchronizing transcriptional control of T cell metabolism and function. Nat Rev Immunol. 2015;15(9):574–584. doi: 10.1038/nri3874
  6. Mariuzza RA, Agnihotri P, Orban J. The structural basis of T-cell receptor (TCR) activation: an enduring enigma. J Biol Chem. 2020;295(4):914–925. EDN: IUHDNU doi: 10.1074/jbc.REV119.009411
  7. Zavyalova MG. Targeted mass-spectrometric analysis of protein phosphorylation. [dissertation]. Moscow; 2020. 132 p. (In Russ.)
  8. Chu N, Salguero AL, Liu AZ, et al. Akt-kinase activation mechanisms revealed using protein semisynthesis. Cell. 2018;174(4):897–907.e14. doi: 10.1016/j.cell.2018.07.003
  9. Shestakova EA. Еstrogen receptor α (ESR1) AND SRC family kinase (LYN) gene’s mutations associated with ovarian cancer endocrine therapy resistance. Advances in Molecular Oncology. 2021;8(1):10–16. EDN: LBNNRL doi: 10.17650/2313-805X-2021-8-1-1-10-16
  10. Grebennikova TA, Belaya ZhE, Rozhinskaya LYa, et al. The canonical wnt/β-catenin pathway: from the history of its discovery to clinical application. Therapeutic archive. 2016;88(10):74–81. EDN: WWYDIZ doi: 10.17116/terarkh201688674-81
  11. Dovzhikova IV, Andrievskaya IA. Estrogen receptors (review). Part 1. Bulletin of physiology and pathology of respiration. 2019;(72):120–127. EDN: WDQNKP doi: 10.12737/article_5d0ad2e5d54867.15780111
  12. Shvedova MV, Anfinogenova YaD, Popov SV, et al. С-jun N-terminal kinases and their modulators in myocardial ischemia/reperfusion injury (review). Siberian Medical Journal (Tomsk). 2016;31(3):7–15. EDN: XHJSED
  13. Vorobyeva NV. Participation of nonreceptor src family tyrosine kinases in the formation of neutrophil extracellular traps. Herald of Moscow University. Series 16. Biology. 2023;78(1):11–16. EDN: OXUINQ doi: 10.55959/MSU0137-0952-16-78-1-2
  14. Loginova MM. Role of neuronal kinases in the adaptation of the central nervous system to the impact of ischemia factors. [dissertation]. Nizhny Novgorod; 2022. 152 p. (in Russ.)
  15. Kuznetsova LA, Basova NE. The role of the neural NO-synthase adapter protein in the pathogenesis of metabolic syndrome and type 2 diabetes mellitus. Siberian Scientific Medical journal. 2023;43(5): 34–39. EDN: CSCJDK doi: 10.8699/SSMJ20230504
  16. Gnedina OO, Morshneva AV, Igotti MV. Role of map kinases in induced phosphorylation of histone h2ax in transformed cells. Cytology. 2023;65(1):54–63. EDN: GOTCEB doi: 10.31857/S0041377123010030
  17. Zhao J, Li L, Feng X, et al. T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain as a promising immune checkpoint target for the treatment of SLE. Lupus. 2024;33(3):209–216. EDN: ZHNMAF doi: 10.1177/09612033241226536
  18. Murai VM, Smirnov EYu, Varlev NA. Mechanisms of immune checkpoint blockade in anti-tumor therapy. Cytology. 2019;61(8): 597–621. EDN: ZCAHGY doi: 10.1134/S0041377119080030
  19. Abul K, Abbas, Lichtman AH, et al. Cellular and molecular immunology. 10th edition. Philadelphia: Elsevier Health Sciences; 2022. 587 p.
  20. Urban VA, Veresov VG. Structural basis of ZAP-70 activation upon phosphorylation of tyrosines 315, 319 and 493. Biology. 2023;67(1): 38–40. EDN: QCWQJG doi: 10.29235/1561-8323-2023-67-1-38-40
  21. Shapoval AI. New kostimulatory molecules of the B7 family and the role of costimulation in the activation of NK cells. [dissertation]. Novosibirsk; 2019. 219 p. (In Russ.) EDN: FKNCWT
  22. Kruglova NA. Participation of phosphatase-associated lymphocyte phosphoprotein (LPAP) in T-cell activation processes. [dissertation]. Moscow; 2019. 140 p. (In Russ.) EDN: BAUGGM
  23. Senichkin VV. Regulation of Mcl-1 to increase the sensitivity of tumor cells to apoptosis. [dissertation]. Moscow; 2018. 158 p. (In Russ.) EDN: UYKCID
  24. Trebak M, Kinet JP. Calcium signalling in T cells. Nat Rev Immunol. 2019;19(3):154–169. doi: 10.1038/s41577-018-0110-7
  25. Mazurov VI, Belyaeva IB. Clinical significance of Janus kinase inhibitors in the therapy of rheumatoid arthritis: achievements and prospects. Modern Rheumatology Journal. 2019;13(4):116–123. EDN: GMOZWO doi: 10/14412/1996-7012-2019-4-116-123
  26. Tyshchuk EV, Mikhailova VA, Selkov SA, et al. Natural killers: origin, phenotype, functions. Medical Immunology (Russia). 2021;23(6): 1207–1228. EDN: QILUOK doi: 10.15789/1563-0625-NKC-2330
  27. Plekhova NG, Somova LM, Drobot EI, et al. The functional activity of innate immunity cells in bacterial infection on background of thermal stress. Russian Journal of Infection and Immunity. 2018;8(1): 43–53. EDN: YWERYV doi: 10.15789/2220-7619-2018-1-43-53
  28. Paturi S, Deshmukh MA Glimpse of «dicer biology» through the structural and functional perspective. Front Mol Biosci. 2021;8:643657. EDN: QKOCPL doi: 10.3389/ fmolb.2021.643657
  29. Lyapunova LS, Tashireva LA, Perelmuter VM. Follicular T-helper lymphocytes and their significance in cancer. Problems in Oncology. 2017;63(6):824–835. EDN: ZXWFDL
  30. Anokhina EM. Clinical and immunological aspects of anti-CTLA-4 therapy of disseminated melanoma. [dissertation abstract]. Saint Petersburg; 2019. 30 p. (In Russ.) EDN: OSLCFX
  31. Voronina EV. Maturation of T-follicular helpers in in vitro models and in Helicobacter pylori infection in vivo. [dissertation]. Nizhny Novgorod; 2019. 167 p. (In Russ.) EDN: MTVHTM
  32. Kotikova AI, Blinova EA, Akleev AV. Subpopulation composition of T-helpers in peripheral blood of persons chronically exposed to radiation in the long term. Extreme Medicine. 2022;24(2):65–74. (In Russ.) EDN: MXUVFS doi: 10.47183/mes.2022.018 EDN: MXUVFS
  33. Khavinson VKh. Peptides, genome, aging. Moscow; 2020. 58 p. (In Russ.) EDN: UCSFZP
  34. Vakhitov TYa, Kudryavtsev IV, Sall TS, et al. T helper cell subsets, key cytokines and chemokines in the pathogenesis of inflammatory bowel disease (part 1). Clinical Practice in Pediatrics. 2020;15(6): 67–78. EDN: ATNWWJ doi: 10.20953/1817-7646-2020-6-67-78
  35. Volkov DV, Stepanova VM, Rubtsov YuP, et al. Protein tyrosine phosphatase CD45 as an immunity regulator and a potential effector of CAR-T therapy. Acta Nature. 2023;15(3):17–26. EDN: HQMECT doi: 10.32607/actanaturae.25438
  36. Mironova NL. Mechanisms of suppression of progression of experimental tumors under the influence of dendritic cells and natural nucleases. [dissertation]. Novosibirsk; 2018. 317 p. (In Russ.) EDN: QXWZOD
  37. Bogdanov AA, Vysochinskaya VV. Prospects for the use of small interfering RNAs as inhibitors of immune checkpoints for immunotherapy in oncology. Practical oncology. 2021;22(3):204–217. EDN: PBXSRD doi: 10.31917/2203204
  38. Stavinskaya OA, Dobrodeeva LK, Patrakeeva VP. Associations between blood concentrations of cytotoxic CD8+ cells and lymphocyte apoptosis in healthy humans. Human ecology. 2021;(9):4–10. EDN: JYPZAX doi: 10.33396/1728-0869-2021-9-4-10
  39. Zhang Q, Li S, Patterson C, et al. Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis. Mol Pharmacol. 2013;83(1):217–224. doi: 10.1124/mol.112.082065
  40. Chetina EV, Kashevarova NG, Sharapova EP. Functions of the mTOR signaling pathway in normal articular cartilage chondrocytes and in osteoarthritis. Rheumatology Science and Practice. 2016;54(6):590–597. EDN: YUAXXT doi: 10.14412/1995-4484-2016-590-597
  41. Gutner UA, Shulik MA. The role of sphingosine-1-phosphate in neurodegenerative diseases. Russian Journal of Bioorganic Chemistry. 2021;47(6):702–720. EDN: BKTASX doi: 10.31857/S0132342321050274
  42. Young BD, Sha J, Vashisht AA, et al. Human multi-subunit ubiquitin ligase E3 required for ubiquitination β subunit of heterotrimeric G protein and subsequent signaling. J Proteome Res. 2021;20(9):4318–4330. EDN: GVLRJE doi: 10.1021/acs.jproteome.1c00292
  43. Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2016;62(5):496–509. EDN: WTOPSV doi: 10.18097/RVMS20166205496
  44. Artemenkov AA. Cytokine-mediated dysregulation of antiviral immune response upon infection with SARS-COV-2 (review). Journal of Medical and Biological Research. 2023;11(3):329–340. EDN: KCZHSM doi: 10.37482/2687-1491-Z148
  45. Oskina NA, Shcherbakov AM, Ovchinnikova LK, et al. Role of phosphatidylinositol-3-kinase in carcinogenesis. Oncology issues. 2017;63(4):545–556. EDN: ZDWSQZ
  46. Stаlhammar ME, Hаkansson LD, Sindelar R. Bacterial N-formyl peptides reduce PMA- and Escherichia coli-induced neutrophil respiratory burst in term neonates and adults. Scand J Immunol. 2017;85(5):365–371. doi: 10.1111/sji.12537
  47. Kropocheva E.V. Study of new programmable nucleases from the family of bacterial proteins-Argonauts. [dissertation abstract]. Moscow; 2022. 28 p. (In Russ.) EDN: UPZNBW
  48. Moiseenko FV, Moiseenko VM. Resistance to targeted therapy. Practical oncology. 2021;22(2):138–164. EDN: MQRWUQ doi: 10.31917/2202138
  49. Roppelt AA, Yukhacheva DV, Myakova NV, et al. X-Linked lymphoproliferative syndrome types 1 and 2 (review of literature and clinical case reports). Pediatric Hematology/Oncology and Immunopathology. EDN: WFFZOX doi: 10.20953/1726-1708-1-17-26
  50. Moskalev AV, Rudoy AS, Apchel AV, et al. Features of biology of transforming growth factor β and immunopathology. Bulletin of the Russian Military Medical Academy. 2016;54(2):206–216. EDN: WDCIQN
  51. Fenyuk BA. Mechanisms of conjugation and regulation of proton-dependent ATP-synthase of bacteria [dissertation]. Moscow; 2022. 253 p. (In Russ.) EDN: KFEHDY
  52. Severyanova LA, Dolgintsev ME. The modern concept of L-lysine action on the nervous and immune regulator systems. Humans and their health. 2007;(2):67–79. EDN: JCELKA
  53. Kropacheva EV, Lisitskaya LA, Agapov AA. Prokaryotic argonaut proteins as a tool of biotechnology. Molecular biology. 2022;56(6): 915–936. EDN: UPZNBW doi: 10.31857/S0026898422060131
  54. Novokreshchennykh EE, Kolodkina AA, Bezlepkina OB. DICER 1 syndrome: clinical variety endocrine manifestations and features of diagnostics. Problems of endocrinology. 2024;70(2):78–85. EDN: SQMQPD doi: 10.14341/probl13383
  55. Mishra S, Brady LJ. The cytoplasmic domains of Streptococcus mutans membrane protein insertases YidC1 and YidC2 confer unique structural and functional attributes to each paralog. Front Microbiol. 2021;12:760873. EDN: ODWVDT doi: 10.3389/fmicb.2021.760873

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Modular structure of tyrosine kinases affecting lymphocyte activation: PH — pleckstrin homology domain; SH — SRC homology domain (adapted from [19] A.K. Abbas et al., 2022. Distributed under the terms of the CC-BY 4.0 license)

下载 (232KB)
3. Fig. 2. Individual members of the immune receptor family: BCR — B-cell receptor; TCR — T-cell receptor; FcεRI — high-affinity IgE receptor; FcγRIIB — unique inhibitory IgG receptor; PD-1 — programmed cell death protein-1; ITAM — immunoreceptor tyrosine-based activation motif; ITIM — immunoreceptor tyrosine-based inhibitory motif; ITSM — immunoreceptor tyrosine-based switch motif (adapted from [19] A.K. Abbas et al., 2022. Distributed under the terms of the CC-BY 4.0 license)

下载 (512KB)
4. FIG. 3. T-cell receptor structure: N, C — terminal extracellular regions; Vβ, Vα — variable domains of α and β chains; Cβ, Cα — constant domains of α and β chains (adapted from [19] A.K. Abbas et al., 2022. Distributed under the terms of the CC-BY 4.0 license)

下载 (365KB)
5. Fig. 4. T-cell receptor binding to the major histocompatibility complex: β2m — beta-2 microglobulin; α1–3 chains (adapted from [19] A.K. Abbas et al., 2022. Distributed under the terms of the CC-BY 4.0 license)

下载 (274KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».