微核糖核酸miR-21-5p作为新型冠状病毒感染后患者心血管疾病变发展标志物的使用可能性
- 作者: Litvinenko R.I.1, Yazenok A.V.1, Gaiduk S.V.1, Slizhov P.A.1, Glushakov R.I.1,2
-
隶属关系:
- Kirov Military Medical Academy
- Saint Petersburg State Pediatric Medical University
- 期: 卷 26, 编号 4 (2024)
- 页面: 579-586
- 栏目: Original Study Article
- URL: https://journals.rcsi.science/1682-7392/article/view/285206
- DOI: https://doi.org/10.17816/brmma634527
- ID: 285206
如何引用文章
详细
对120例感染新型冠状病毒后出现心血管病变的患者进行了血液中循环miR-21-5p的水平研究。根据纳入和非纳入标准,选择了6组患者,每组20名曾感染过新型冠状病毒,且需要住院治疗的患者。评估血液中微核糖核酸miR-21-5p水平作为新型冠状病毒感染后,患者心血管病变发展/恶化的生物标志物的意义。根据先前已证实存在冠心病、高血压和动脉粥样硬化,以及未确诊心血管病变的原则进行分组。患者还被分为循环系统疾病恶化或初次发病和无循环系统疾病的两组。在循环系统病理学验证范围内,对所有患者在新型冠状病毒感染前后进行了检查。当将最初证实的冠心病恶化或未恶化的组与最初没有心血管疾病的组进行比较时,发现微核糖核酸miR-21-5p水平存在统计学上的显著差异。在对最初证实的高血压和动脉粥样硬化组相比时,心血管病变病程没有统计学上的显著差异。由此可见,测定血液中的微核糖核酸miR-21-5p是评估冠心病病程的一种很有前景的生物标志物,包括新型冠状病毒感染后的患者。这种方法与根据临床现象,以及实验室数据和仪器研究法得出的冠心病病程的评估结果相互关联。对心血管病变患者进行更大样本的进一步研究,以及随着时间的推移动态监测微核糖核酸miR-21-5p的表达水平,可能会增加这一生物标志物的信息量,并有助于为这种病症患者做出进一步动态监测的临床决策,达到减少不良并发症的目的。
作者简介
Ruslan I. Litvinenko
Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8435-9958
SPIN 代码: 8981-4000
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgArkady V. Yazenok
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-1334-8191
SPIN 代码: 4107-1280
MD, Dr. Sci. (Medicine), associate professor
俄罗斯联邦, Saint PetersburgSergey V. Gaiduk
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1524-9493
SPIN 代码: 8602-4922
MD, Dr. Sci. (Medicine), associate professor
俄罗斯联邦, Saint PetersburgPavel A. Slizhov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-6885-5273
SPIN 代码: 3626-6262
junior researcher
俄罗斯联邦, Saint PetersburgRuslan I. Glushakov
Kirov Military Medical Academy; Saint Petersburg State Pediatric Medical University
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-0161-5977
SPIN 代码: 6860-8990
MD, Dr. Sci. (Medicine)
俄罗斯联邦, Saint Petersburg; Saint Petersburg参考
- Bichurin DR, Atmaikina OV, Cherepanova OA. Cardiovascular diseases. Regional aspect. International Research Journal. 2023;8(134). doi: 10.23670/IRJ.2023.134.103
- Andreenko AA, Andreichuk YuV, Arsent’ev VG, et al. Infection caused by SARS-COV-2. Kryukov EV, ed. Saint Petersburg; 2023. 260 p. (In Russ.) EDN: QFKFPFCOVID-19
- Berezovskaya GA, Petrishchev NN, Volkova EV, et al. Defeat of the cardiovascular system in the new coronavirus infection COVID-19. Cardiology: news, opinion, training. 2022;10(4):37–47. doi: 10.33029/2309-1908-2022-10-4-37-47
- Melnikova LV, Lokhina TV, Berenstein NV, and others. Cardiovascular consequences of COVID-19: pathogenesis, diagnosis and treatment. Lechaschi Vrach. 2021;(7):8–13. (In Russ.) doi: 10.51793/OS.2021.24.7.002
- Kryukov EV, Trishkin DV, Salukhov VV, et al. Experience of military medicine in the fight against the new coronavirus infection. Vestnik Rossijskoj Akademii Nauk. 2022;92(7):699–706. (In Russ.) EDN: HIPURN doi: 10.1134/S1019331622040050
- Felekkis K, Touvana E, Stefanou C, et al. MicroRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236–240.
- Gumilevskiy BYu, Moskalev AV, Gumilevskay OP, et al. Features of immunopathogenesis of a new coronavirus infection. Bulletin of the Russian Military Medical Academy. 2021;23(1):187–198. doi: 10.17816/brmma.63654
- Romaine SPR, Tomaszewski M, Condorelli G, et al. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 2015;101(12):921–928. doi: 10.1136/heartjnl–2013–305402
- Peters LJF, Biessen EAL, Hohl M, et al. Small things matter: Relevance of microRNAs in cardiovascular disease. Front Physiol. 2020;11:1–14. doi: 10.3389/fphys.2020.00793
- Marchi R, Sugita B, Centa A, et al. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: A systematic review. Infect Genet Evol. 2021;91:104832. doi: 10.1016/j.meegid.2021.104832
- Garg A, Seeliger B, Derda AA, et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur J Heart Fail. 2021;23(3):468–475. doi: 10.1002/ejhf.2096
- Pieri M, Vayianos P, Nicolaidou V, et al. Alterations in circulating miRNA levels after infection with SARS-CoV-2 could contribute to the development of cardiovascular diseases: What We Know So Far. Int J Mol Sci. 2023;24(3):1–14. doi: 10.3390/ijms24032380
- Chistiakov DA, Sobenin IA, Orekhov AN, et al. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. BioMed. Res. Int. 2015;2015:354517. doi: 10.1155/2015/354517
- Cengiz M, Yavuzer S, Avci BK, et al. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens. 2015;37(8):643–649. doi: 10.3109/10641963.2015.1036064
- Zhu N, Zhang D, Chen S, et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215(2):286–293. doi: 10.1016/j.atherosclerosis.2010.12.024
- Kumar A, Fausto A. Robbins and Cotran in pathologic basis of disease. 10th ed. Spain: Elsevier España, S.L.U.; 2020. Р. 1392.
- Sanlialp M, Dodurga Y, Uludag B, et al. Peripheral blood mononuclear cell microRNAs in coronary artery disease. J Cell Biochem. 2020;121(4):3005–3009. doi: 10.1002/jcb.29557
- Chen Z, Song S, Zhu J, et al. Regulatory mechanism of MiR-21 in formation and rupture of intracranial aneurysm through JNK signaling pathway-mediated inflammatory response. Int J Clin Exp Pathol. 2020;13(7):1834–1841. doi: 10.3389/fgene.2022.875007
- Ren W, Hou J, Yang C, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38(1):62. doi: 10.1186/s13046-019-1027-0
