贝叶斯网络荟萃分析中的随机临床试验二元结果综述

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

本文介绍了贝叶斯网络元分析作为一种利用数学模型进行间接比较的方法的主要方面。为了说明贝叶斯网络荟萃分析法的运行情况,引入了随机效应和固定效应两种主要模型的程序代码。这些模型由 Pascal 组件编写,并在 JAGS 程序中运行。用于建模的数据是从 D. Hu、 A.M. O'Connor, S. Wang 等人的论文[6]中生成的数据,以便核对结果。使用 R 语言和 rjags 软件包将数据载入模型并运行程序。在确定最佳模型时,使用了原始 R 代码计算的模型充分性指标,如总残差、杠杆率和信息偏差标准。此外,还使用 ggplot2 软件包确定模型充分性的图形方法。在考虑到过渡性和异质性假设的情况下,以临床试验中现有的药物疗效结果为基础构建证据网络的例子进行了探讨。概述了进行间接比较和直接比较以确定药物真实估计值的可能性。还解释了贝叶斯统计的要素,如先验概率、后验概率和可能性,以及在荟萃分析中使用这些要素的优势。介绍了广义线性模型的一般和特殊形式的数学装置,用于使用二项式输出来获得治疗效果的相对估计。对模型的性能进行了解释。在对充分性指标进行比较后,随机效应模型比固定效应模型更具优势。为了达到更好的充分性,应该花时间仔细卸载出版物中的数据,并选择有参考价值的先验指标。总的来说,贝叶斯综合分析是一种独特而重要的网络荟萃分析。它的特殊之处在于使用概率方法进行数据分析。了解了解贝叶斯统计的基本原理也是在各个研究领域成功使用这种方法的一个重要方面。然而,要有效地应用这种方法,必须注意仔细的数据准备和先验表示的选择。与其他荟萃分析方法相比,如果有信息丰富的先验分布和适当的实施,贝叶斯综合法可以提供更准确、更可靠的结果。贝叶斯综合法是世界和俄罗斯联邦公认的统计数据分析方法。

作者简介

Kirill V. Sapozhnikov

Kirov Military Medical Academy

编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2476-7666
SPIN 代码: 2707-0339
Scopus 作者 ID: 57200810332
Researcher ID: ААЕ-3453-2022

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Sergei A. Parfenov

Kirov Military Medical Academy

Email: sa.parfenov1988@yandex.ru
ORCID iD: 0000-0002-1649-9796
SPIN 代码: 6939-6910

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Andrei A. Lazarev

Saint Petersburg State University of Telecommunications

Email: Andrey.05.03.ru@mail.ru
ORCID iD: 0009-0006-6204-8423
SPIN 代码: 9715-2124

graduate student

俄罗斯联邦, Saint Petersburg

Ruslan V. Kirichek

Saint Petersburg State University of Telecommunications

Email: kirichek@sut.ru
ORCID iD: 0000-0002-8781-6840
SPIN 代码: 3253-4972

Dr. Sci. (Tech.), associate professor

俄罗斯联邦, Saint Petersburg

Daria G. Tolkacheva

Russian Presidential Academy of National Economy and Public Administration

Email: tolkacheva.d@gmail.com
ORCID iD: 0000-0002-6314-4218
SPIN 代码: 4186-5243
Scopus 作者 ID: 57221817074

independent expert of research projects

俄罗斯联邦, Moscow

Olga N. Mironenko

Russian Presidential Academy of National Economy and Public Administration

Email: freelomir@yandex.ru
ORCID iD: 0000-0001-8952-8386
SPIN 代码: 3265-8708

Cand. Sci. (Econ.)

俄罗斯联邦, Moscow

Natalia V. Klishkova

Kirov Military Medical Academy

Email: N-Klishkova@yandex.ru
ORCID iD: 0000-0003-0273-0931
SPIN 代码: 7031-7397

Cand. Sci. (Ped.), associate professor

俄罗斯联邦, Saint Petersburg

Valeriy V. Kulishenko

Kirov Military Medical Academy

Email: v_kulishenko@mail.ru
ORCID iD: 0000-0002-3872-3357
SPIN 代码: 1899-7341

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

参考

  1. Bogdanov AA, Bogdanov AA. Network meta-analysis for clinicians. Modern Oncology. 2021;23(3):418–424. EDN: IVQHBW doi: 10.26442/18151434.2021.3.201202
  2. Omelianovskii VV, Avksenteva MV, Sura MV, et al. Methodological recommendations for conducting meta-analyses. Moscow: Center for Expertise and Quality Control of Medical Care; 2017. 28 р. (In Russ.)
  3. Sadeghirad B, Foroutan F, Zoratti MJ, et al. Theory and practice of Bayesian and frequentist frameworks for network meta-analysis. BMJ Evid Based Med. 2023;28(3):204–209. doi: 10.1136/bmjebm-2022-111928
  4. Li T, Puhan MA, Vedula SS, Singh S, et al. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011;9:79. doi: 10.1186/1741-7015-9-79
  5. Chaimani A, Caldwell DM, Li T, et al. Undertaking network meta-analyses. Cochrane handbook for systematic reviews of interventions. 2019:285–320. doi: 10.1002/9781119536604.ch11
  6. Hu D, O’Connor AM, Wang C, et al. How to conduct a Bayesian network meta-analysis. Front Vet Sci. 2020;(7):271. doi: 10.3389/fvets.2020.00271
  7. Rouse B, Chaimani A, Li T. Network meta-analysis: an introduction for clinicians. Intern Emerg Med. 2017;12:103–111. doi: 10.1007/s11739-016-1583-7
  8. Bland JM, Altman DG. Bayesians and frequentists. BMJ. 1998;317(7166):1151–1160. doi: 10.1136/bmj.317.7166.1151
  9. Kruschke JK, Liddell TM. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev. 2018;25:178–206. doi: 10.3758/s13423-016-1221-4
  10. Hespanhol L, Vallio CS, Costa LM, Saragiotto BT. Understanding and interpreting confidence and credible intervals around effect estimates. Braz J Phys Ther. 2019;23(4):290–301. doi: 10.1016/j.bjpt.2018.12.006
  11. Dias S, Ades AE, Welton NJ, Jansen JP. Network meta-analysis for decision-making. Bristol: John Wiley & Sons; 2018. 473 р.
  12. Rosenberger KJ, Xing A, Murad MH, et al. Prior choices of between-study heterogeneity in contemporary Bayesian network meta-analyses: an empirical study. J Gen Intern Med. 2021;36(4):1049–1057. doi: 10.1007/s11606-020-06357-1
  13. White IR, Turner RM, Karahalios A, Salanti G. A comparison of arm-based and contrast-based models for network meta-analysis. Stat Med. 2019;38(27):5197–5213. doi: 10.1002/sim.8360
  14. Lin L, Chu H, Hodges JS. On evidence cycles in network meta-analysis. Stat Interface. 2020;13(4):425. doi: 10.4310/sii.2020.v13.n4.a1
  15. Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. Bristol: National Institute for Health and Clinical Excellence; 2011. 98 р.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. A network of three evidences

下载 (32KB)
3. Fig. 2. Data contribution using a random-effects model

下载 (203KB)
4. Fig. 3. Data contribution using a fixed-effects model

下载 (215KB)

版权所有 © Eco-Vector, 2024



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».