The development and experimental assessment of medical devices protecting eviscerated abdominal organs using the eventration model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

On an experimental model of eventration in small and large animals (94 rats and 12 pigs), the safety and effectiveness of samples of aseptic protective dressings made of nanomaterials with impregnations used to prevent the development of complications from abdominal organs and tissues in comparison with control ones — gauze medical sterile ones were evaluated. After 3 hours, 3 and 7 days after surgery, the viability of the intestinal wall and the presence of complications were assessed on the basis of laboratory, experimental, instrumental and morphological techniques. The assessment of microcirculation (perfusion) of the intestine was carried out using the apparatus “LAKK-02”. It was found that according to the complex of clinical and laboratory, microbiological, morphological, microcirculatory data and expert assessment, the safest and most effective for the protection of abdominal organs was an aseptic bandage made of non-woven material spunbond impregnated with vinylin + silicone. The initial values of microcirculation parameters in the pig groups were: 18.4 [17.1; 19] perfusion units in the experimental group and 15.6 [6.8; 17.7] perfusion units in the control group. After applying the bandage in the experimental group, the level of microcirculation did not significantly change. In the control group, after 3-hour exposure to the bandage, a decrease in the level of microcirculation was observed to 6.5 [5.1; 8] perfusion units (p < 0.05 compared to the initial and similar stage in the experimental group). Thus, an aseptic bandage made of spunbond nanomaterial impregnated with vinylin + silicone retains the necessary moisture and protects the eventrated abdominal organs, demonstrates safe adhesive properties and prevents the development of local and general complications in the early postoperative period.

About the authors

Valeriy N. Adamenko

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: adavalnik@mail.ru
ORCID iD: 0000-0003-0420-8047
SPIN-code: 6212-2960

senior staff scientist

Russian Federation, Saint Petersburg

Konstantin P. Golovko

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation; Saint Petersburg State University

Email: labws@mail.ru
ORCID iD: 0000-0002-1584-1748
SPIN-code: 2299-6153

doctor of medical sciences, associate professor

Russian Federation, Saint Petersburg; Saint Petersburg

Tatiana N. Suborova

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: microbiologma@list.ru
ORCID iD: 0000-0002-6783-1920
SPIN-code: 9771-5906

doctor of biological science

Russian Federation, Saint Petersburg

Yana G. Toropova

Almazov National Medical Research Center

Email: yana.toropova@mail.ru
ORCID iD: 0000-0003-1629-7868
SPIN-code: 2020-4213

candidate of biology sciences

Russian Federation, Saint Petersburg

Denis A. Zaichikov

State Institute for Experimental Military Medicine of the Ministry of Defense of the Russian Federation

Email: dazai@list.ru
SPIN-code: 1037-3860

candidate of medical science

Russian Federation, Saint Petersburg

References

  1. Alisov PG, Samohvalov IM. Ognestrel’nye ranenija zhivota. Osobennosti, diagnostika i lechenie v sovremennyh uslovijah. Saint Peterburg: Sintez Buk; 2018. 320 p. (In Russ.).
  2. Ukazanija po voenno-polevoj hirurgii. Bel’skih AN, Samohvalova IM, eds. Ministerstvo oborony Rossijskoj Federacii. Moscow: MO RF; 2013. 474 p. (In Russ.).
  3. Kudrjavcev BP, Savvin JuN, Krasnov SA, et al. Klinicheskie rekomendacii po okazaniju medicinskoj pomoshhi postradavshim s povrezhdenijami zhivota i organov brjushnoj polosti v chrezvychajnyh situacijah. Klinicheskie Rekomendacii po politravme. Moscow; 2016:69–90. (In Russ.).
  4. Masljakov VV, Barsukov VG, Kurkin KG, et al. Scope of provision of primary medical and sanitary care to members of population with gunshot wounds in local armed conflict environment. Disaster Medicine. 2018;(2):30–33. (In Russ.).
  5. Bjalik VL. Opyt sovetskoj mediciny v Velikoj Otechestvennoj vojne 1941–1945 gg. Vol. 35. Moscow: Medgiz; 1955. P. 117–126. (In Russ.).
  6. Emergency War Surgery: Third United States Revision. Borden Institute Walter Reed Army Medical Center. Szul AC, Davis LB, еds. Washington, DC; 2004. 488 p.
  7. Tactical Combat Casualty Care and Wound Treatment. U.S. Department of Defense. New York City: Skyhorse Publishing; 2016. 176 p.
  8. Pravila provedenija rabot s ispol’zovaniem jeksperimental’nyh zhivotnyh (Prilozhenie k prikazu Ministerstva zdravoohranenija SSSR ot 12.08.1977 g. № 755). Available from: https://www.alppp.ru/law/hozjajstvennaja-dejatelnost/selskoe-hozjajstvo/64/prikaz-minzdrava-sssr-ot-12-08-1977--755.html
  9. Samohvalov IM, Golovko KP, Denisov AV, et al. Comparative assessment of a special protective and moistening bandages for eventrated abdominal organs in experiment. Bulletin of the Russian Military Medical Academy. 2017;60(4):95–100. (In Russ.).
  10. Methodological guidelines of MU 4.2.2039-05 “Technique of collecting and transporting biomaterials to microbiological laboratories” (approved and put into effect by the Chief State Sanitary Doctor of the Russian Federation on 23 December 2005 g.). Moscow; 2019. 78 p. (In Russ.).
  11. Golovko KP, Adamenko VN, Bojarincev VV, et al. Testing outcomes for a new aseptic abdominal dressing to protect and hydrate eventrated organs using experimental model of the open abdominal trauma. Polytrauma. 2019;(2):83–94. (In Russ.).
  12. Krupatkin AI, Sidorov VV. Lazernaja dopplerovskaja floumetrija mikrocirkuljacii krovi. Moscow; 2005. 123 p. (In Russ.).
  13. Pechnikova NA, Toropova JaG. Central hemodynamics, microcirculation and oxidative metabolism of divine intestine divisions in experimental modeling of ischemia reperfusion. Smolensk Medical Almanac. 2018;(4):120–123. (In Russ.).
  14. Rybka MM. Acute ischemic injure of the intestinal wall. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2016;17(5): 11–18. (In Russ.).
  15. Barhatov IV. Assessment of the microcirculation system by laser doppler flowmetry. Clinical Medicine. 2013;91(11):21–27. (In Russ.).
  16. Timerbulatov ShV, Sagitov RB, Sultanbaev AU, et al. Diagnostics of the intestine ischemic damages in some acute surgical diseases of abdominal cavit. Klinicheskaja i jeksperimental’naja hirurgija. 2012;(3):40–52. (In Russ.).
  17. Hoff DA, Gregersen H, Hatlebakk JG. Mucosal blood flow measurements using laser Doppler perfusion monitoring. World J. Gastroenterol. 2009;(15):198–203. doi: 10.3748/wjg
  18. Patent RUS № 184147/ 17.10.18. Byul. № 29. Golovko KP, Adamenko VN, Bojarincev VV, et al. Asepticheskaja povjazka dlja zashhity i uvlazhnenija jeventrirovannyh organov brjushnoj polosti. Available from: https://yandex.ru/patents/doc/RU184147U1_20181017 (In Russ.).
  19. Polynskij AA, Chernyshov TM. Eventration. Principles of diagnosis and medical treatment. Journal of the Grodno State Medical University. 2014;46(2):10–14. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. View of KBP-A with AP-A

Download (302KB)
3. Fig. 2. View of PPI with gauze bandage

Download (206KB)
4. Fig. 3. Dynamics of the level of leukocytes in the studied groups (rats) during the experiment

Download (212KB)
5. Fig. 4. Microcirculation parameters: a — M — diagram, σ — line graph; b — Kv of the small intestine of rats at different stages of the experiment). * — p < 0,05 compared to the initial data; # — p < 0,05 compared to group 1

Download (586KB)
6. Fig. 5. Micropreparation of rat intestine (group 2). Sheaths: 1 — serous; 2 — muscular; 3 — submucosa; 4 — mucous membrane. Staining: hematoxylin and eosin. Mag. ×630

Download (198KB)
7. Fig. 6. Micropreparation of rat intestine (group 6). Sheaths: 1 — serous; 2 — muscular; 3 — submucosa; 4 — mucous membrane. Staining: hematoxylin and eosin. Mag. ×630

Download (181KB)
8. Fig.7. Parameters of microcirculation of the small intestine of pigs at different stages of the experiment. * — p < 0,05 compared to the initial data; # — p < 0,05 compared to AP-A group

Download (165KB)
9. Fig. 8. Control group pig intestine micropreparation. Disorganization of the serous and muscular membranes. Staining: hematoxylin and eosin. Mag. ×400

Download (217KB)
10. Fig. 9. Micropreparation of the small intestine of a pig of the experimental group. Sheaths: 1 — serous; 2 — muscular. Staining: hematoxylin and eosin. Mag. ×400

Download (283KB)

Copyright (c) 2021 Adamenko V.N., Golovko K.P., Suborova T.N., Toropova Y.G., Zaichikov D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies