Artificial intelligence using for medical diagnosis via implementation of expert systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern biomedical technologies development affords to provide the doctor with colossal amount of information about patient’s organism condition. However, the opportunity of using this data for medical diagnosis fully now is a distantive perspective only. The reason is a human’s limited ability in assessment and interpretation this data arrays. The solution seems in artificial intelligence and expert systems wide introduction to medicine. Currently, almost all authors consider various options for constructing artificial neural networks as a way to implement artificial intelligence. This approach, which goes back to the fundamental theorem of A.N. Kolmogorov, the works of V.I. Arnold and Hecht-Nielsen [3], demonstrates excellent capabilities in a number of pattern recognition problems, which are reduced to revealing hidden details against the background of input noises. Much less often is mentioned such a method of modeling formal thinking as expert systems, which arose in the 1960s and then went into the shadows. Since the inception of cybernetics, computer programmers have tried to reproduce the mechanism of human thinking, that is, the task was to teach the computer to "think". The first known results in the field of creating and using intelligent systems were laid by the work of Norbert Wiener and G.S. Altshuller. At the same time, the creation of intelligent systems was reduced to the development of programs that solve problems using a variety of heuristic methods based on the property of human thinking to generalize.

About the authors

B. N. Kotiv

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: vmeda-nio@mil.ru

doctor of medical, sciences associate professor

Russian Federation, Saint Petersburg

Igor A. Budko

Russian Academy of National Economy and Public Administration under the President of the Russian Federation

Email: beerd@inbox.ru

candidate of technical sciences

Russian Federation, Saint Petersburg

Igor A. Ivanov

PharmPatent Limited Liability Company

Email: iia3@yandex.ru

candidate of medical sciences

Russian Federation, Saint Petersburg,

Igor U. Trosko

Stock Company RT LABS

Email: troskoigor@gmail.com

lead implementation engineer

Russian Federation, Saint Petersburg

References

  1. Kolmogorov AN. O predstavlenii nepreryvnyh funkcij neskol’kih peremennyh superpozicijami nepreryvnyh funkcij men’shego chisla peremennyh AN Kolmogorov. Izvestija AN SSSR. 1956;2(108):179–182. (In Russ.)
  2. Arnol`d VI. O funkcii treh peremennyh. VI Arnol`d. Izvestija AN SSSR. 1957;9(114):679–681. (In Russ.)
  3. Hecht-Nielsen R. Kolmogorov’s Mapping Neural Network Existence Theorem. R Hecht-Nielsen. IEEE First Annual Int. Conf. on Neural Netwoks, San Diego. 1987;3:11–13.
  4. Kruglov VV. Iskusstvennye nejronnye seti. Teoriya i praktika. 2-e izd., stereotip. VV Kruglov, VV Borisov. Moscow: Goryachaya liniya-Telekom; 2002;382. (In Russ.)
  5. Viner N. Kibernetika. N Viner. Moscow: Nauka; 1983. (In Russ.)
  6. Altshuller GS, et al. Poisk novyx idej: ot ozareniya k texnologii. Kishinyov: Kartya moldovenyaske; 1989. 111 p. (In Russ.)
  7. Ekspertnye sistemy. Principy raboty i primery. Ed. by R. Forsajta. Moscow: Radio i svyaz; 1987. (In Russ.)
  8. Gavrilova TA, Xoroshevskij VF. Bazy` znanij intellektual`ny`x system. Saint Petersburg: Piter; 2000. 384 p. (In Russ.)
  9. Uotermen D. Rukovodstvo po e`kspertny`m sistemam. Moscow: Mir; 1989. (In Russ.)
  10. Dzhekson P, Piter P. Vvedenie v e`kspertny`e sistemy`. Moscow: Vil`yams; 2001. (In Russ.)
  11. Predstavlenie i ispol`zovanie znanij. Ed. by X. Ue`no, M. Isidzuka. Moscow: Mir; 1989. (In Russ.)
  12. Kazancev AP. Differencial`naya diagnostika infekcionny`x boleznej. Moscow: MIA; 1999. 482 p. (In Russ.)
  13. Lezhenko A. On the Methods of Formalization of the Information Treads and Data Processing in Integrated Information and Telecommunication Technologies. 8th Multi-Conference on Systemic. Cybernetics and Informatics (SCI 2004). Orlando, Florida, USA; 2004. P. 180–185.
  14. Mizumoto M, Gupta MM, Ragade RK, Yage RR. Some methods of fuzzy reasoning. Advances in Fuzzy Set Theory Applications. North-Holland, Amsterdam. 1979;253–283.
  15. Kumar A. Dr. Sanjay Kumar Study and Analysis of MYCIN expert system. International Journal of Engineering and Computer Sience. 2015;4(10):14861–14865.
  16. Buchanan BG, Shortliffe EH. Rule-based Expert Systems: The МYСIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley. Reading, MA; 1984.
  17. Ambalov YuM. Algoritm provedeniya differencial`noj diagnostiki. Yu.M. Ambalov. Uspexi sovremennogo estestvoznaniya. 2003;8:34–34. (In Russ.)
  18. Serobabov AS, et al. Razrabotka e`kspertnoj sistemy` rannej diagnostiki zabolevanij: programmny`e sredstva pervichnoj obrabotki i vy`yavlenie zavisimostej. Omskij nauchn. vestn. 2018;4(160):179–184. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1.Generalized structure of the expert system

Download (91KB)
3. Fig. 2.Example of a semantic network

Download (61KB)

Copyright (c) 2021 Kotiv B.N., Budko I.A., Ivanov I.A., Trosko I.U.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».