Hemorrhagic fevers of viral nature. State of the problem and directions for creating effective means of prevention and treatment


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract. An attempt to summarize the data of available information materials on epidemiological aspects, the state and prospects of prevention and treatment of hemorrhagic fevers was. Hemorrhagic fevers of viral nature-zoonotic diseases caused by viruses containing ribonucleic acid are classified into 4 families: Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae. They are spread all over the world, and their pathogens are easily transmitted from person to person, thereby spreading quickly enough beyond the main focus of biological infection. That is why the causative agents of hemorrhagic fevers are regarded as highly contagious biological agents, and agents bioterrorism. Unfortunately, there are currently no effective means of specific prevention and treatment of these infections, and therapeutic measures are limited to the use of symptomatic means. In this regard, the search for substances with pronounced antiviral activity against pathogens of hemorrhagic fevers that can effectively protect against these infections, as well as prevent their occurrence and spread is one of the priority areas of research in modern Infectology, and with the involvement of modern achievements in the field of molecular Virology and genetic engineering. The data obtained in this regard allow a more in-depth understanding of the pathogenesis of hemorrhagic fevers, the mechanisms of interaction of the pathogen with the host at the cellular level, the mechanisms of intracellular replication of viruses, the formation of the host’s response to «viral invasion» and clinical manifestations of diseases.

About the authors

A. V. Stepanov

State scientific-research test Institute of military medicine of Defense Ministry of the Russian Federation

Author for correspondence.
Email: gniiivm_15@mil.ru
Russian Federation, Saint Petersburg

A. L. Buzmakova

State scientific-research test Institute of military medicine of Defense Ministry of the Russian Federation; North-Western State Medical University named after I.I. Mechnikov

Email: gniiivm_15@mil.ru
Russian Federation, Saint Petersburg; Saint Petersburg

A. V. Potapova

State scientific-research test Institute of military medicine of Defense Ministry of the Russian Federation; North-Western State Medical University named after I.I. Mechnikov

Email: gniiivm_15@mil.ru
Russian Federation, Saint Petersburg; Saint Petersburg

M. A. Yudin

State scientific-research test Institute of military medicine of Defense Ministry of the Russian Federation; North-Western State Medical University named after I.I. Mechnikov

Email: gniiivm_15@mil.ru
Russian Federation, Saint Petersburg; Saint Petersburg

V. Ya. Apchel

Military medical academy of S.M. Kirov; Russian State Pedagogical University. A.I. Herzen

Email: gniiivm_15@mil.ru
Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Баранова, Н.Н. Медицинская эвакуация при ликвидации последствий чрезвычайных ситуаций: маршрутизация, критерии качества / Н.Н. Баранова, С.Ф. Гончаров // Скорая медицинская помощь. – 2019. – Т. 20. – С. 4.
  2. Кенембаева, А.С. Вирусные геморрагические лихорадки с точки зрения биотерроризма / А.С. Кенембаева, З.М. Исмаилова // Фундаментальные и прикладные исследования в современном мире. – 2017. – Vol. 20 (1). – P. 134–137.
  3. Aman, M.J. Development of a broad-spectrum antiviral with activity against Ebola virus / M.J. Aman [et al.] // Antivir Res. – 2009. – Vol. 83. – P. 245–251.
  4. Barradas, J.S. Imidazo [2,1-b] thiazole carbohydrate derivatives: Synthesis and antiviral activity against Junin virus, agent of Argentine hemorrhagic fever / J.S. Barradas [et al.] // Eur. J Med. Chem. – 2011. – Vol. 46. – P. 259–264.
  5. Becker, S. Marburg virus regulates the IRE1/XBP1-dependent unfolded protein response to ensure efficient viral replication / S.Becker [et al.] // Emerg Microbes Infect. – 2019. – Vol. 8. – P. 1300–1313.
  6. Borio, L. Hemorrhagic fever viruses as biological weapons medical and public health management / L. Borio [et al.] // JAMA. – 2002. – Vol. 287, № 18. – P. 2391–405.
  7. Bray, M. Experimental therapy of filovirus infections / M. Bray, J. Paragas // Ibid. – 2002. – Vol. 54. – P. 1–17.
  8. Diamond, M.S. West Nile virus infection and immunity / M.S. Diamond [et al.] // Nature Reviews Microbiologyvolume. – 2013. – Vol. 11. – P. 115–128.
  9. Dowall, S. Emerging viruses and current strategies for vaccine intervention / S. Dowall [et al.] // Clinical and Experimental Immunology. – 2019. – Vol. 196. – P. 157–166.
  10. Fan, Y. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens / Y. Fan [et al.] // J. Control Rel. – 2015. – Vol. 208. – P. 121–129.
  11. Feldmann, H. Ebola haemorrhagic fever / H. Feldmann, T.W. Geisbert. – Lancet. – 2011. – Vol. 373. – P. 849–862.
  12. Geisbert, T.W. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study / T.W. Geisbert [et al.] // Lancet. – 2010. – Vol. 375. – P. 1896–905.
  13. Haughney, S.L. Effect of nanovaccine chemistry on humoral immune response kinetics and maturation / S.L. Haughney [et al.] // Nanoscale. – 2014. – Vol. 6. – P. 13770–13778.
  14. Hensley, L.E. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus species / L.E. Hensley [et al.] // PLoS Pathogens. – 2010. – Vol. 6, № 5. – e1000904.
  15. Husna, A. Ebola Virus: An Updated Review on Immunity and Vaccine / A. Husna [et al.] // MOJ Proteomics Bioinform. – 2018. – Vol. 7. – Issue. 1.00205.
  16. Irvine, D.J. Synthetic Nanoparticles for Vaccines and Immunotherapy / D.J. Irvine [et al.] // Chem. Rev. – 2015. – Vol. 115. – P. 11109–11146.
  17. Kato, D. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein / D. Kato [et al.] // Ibid. – 2010. – Vol. 88. – P. 236–243.
  18. Kiselev, O.I Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents / O.I.Kiselev, A.V.Vasin, E.G.Deeva [et al.] // Molecular Biology. – 2015. – Vol. 49. – P. 480–493.
  19. Kuai, R. Lipid-based nanoparticles for vaccine applications / In: Jo H, Jun HW, Shin J, Lee SH, editors. Biomedical Engineering: Frontier Research and Converging Technologies. – 2015 – P. 177–197.
  20. Marasini, N. Oral delivery of nanoparticle-based vaccines / N. Marasini [et al.] // Expert Rev. Vaccines. – 2014. – Vol. 13. – P. 1361–1376.
  21. Marzi, A. « Protection Against Marburg Virus Using a Recombinant VSV-Vaccine Depends on T and B Cell Activation» / A. Marzi [et al.] // Front Immunol. – 2019. – Vol. 9, № 4. – Р. 03071.
  22. Mirski, T. Globalizacja a choroby zakaźne / T. Mirski [et al.] // Przegl. Epidemiol. – 2011. – Vol. 65. № 4. – P. 651–658.
  23. Rivera, A. Molecular mechanisms of Ebola pathogenesis / A. Rivera [et al.] // J. Leukoc. Biol. – 2016. – Vol. 100. – P. 889–904.
  24. Sahdev, P. Biomaterials for nanoparticle vaccine delivery systems / P. Sahdey [et al.] // Pharm. Res. – 2014. – Vol. 31. – P. 2563–2582.
  25. Smith, D.R. Inhibition of heat-shock protein 90 reduces Ebola virus replication / D.R. Smith [et al.] // Antivir Res. – 2010. – Vol. 87. – P. 187–194.
  26. Sun, J. Core-controlled polymorphism in virus-like particles / J. Sun [et al.] // PNAS. – 2007. – Vol. 104, № 4. – P. 1354–1359.
  27. Sun, Y. Protection against lethal challenge by Ebola virus-like particles produced in insect cells / Y. Sun [et al.] // Virology. – 2009. – Vol. 383. – P. 12–21.
  28. Yang, C.E. Protection against filoviruses infection: virus particle vaccines / C.E. Yang, L. Ye, R.W. Compans // Expert Rev. Vacc. – 2008. – Vol. 79. – P. 333–344.
  29. Yermolina, M.V. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry / M.Y. Yermolina [et al.] // J. Med. Chem. – 2011. – Vol. 54, № 3. – P. 765–781.
  30. Yue, H. Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications / H. Yue // Vaccine. – 2015. – Vol. 33. – P. 5927–5936.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Platform technologies based on viral vectors

Download (248KB)

Copyright (c) 2020 Stepanov A.V., Buzmakova A.L., Potapova A.V., Yudin M.A., Apchel V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies