Аpplication of the mathematical model of human torso for modeling abbreval influence in wound ballistics


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract. In the work, a review of scientific articles on the behavior of tissues and organs of the human body under local mechanical effects on it, as well as a description of the physico-mechanical properties of biological materials. The selection of mechanical behavior for each biological material as part of a mathematical model of the human torso was carried out, its finite element model was created, validation experiments were modeled using data presented in the literature. An original calculation model of a human torso with a tuned interaction of organs with each other was developed. Contact interaction parameters are determined. The developed computational model of a human torso was verified based on data from open sources for an experiment with mechanical action by a cylindrical impactor. An algorithm for processing pressure and acceleration graphs has been implemented in order to obtain tolerance curves. A specialized modular program has been created for the automated processing of calculation results and the output of the main results. 42 numerical tests were carried out simulating the entry of a steel ball into each of 21 zones for power engineers of 40 and 80 J. According to the results of the tests for each organ, pressure and acceleration tolerance curves were obtained, animations of the behavior of organs under shock were created, visualization of the pressure field propagation in organs was obtained torso.

About the authors

A. V. Denisov

Military medical academy of S.M. Kirov

Author for correspondence.
Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

M. D. Stepanov

Peter the Great St.Petersburg Polytechnic University

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

N. A. Haraldin

Peter the Great St.Petersburg Polytechnic University

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

A. V. Stepanov

Peter the Great St.Petersburg Polytechnic University

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

A. I. Borovkov

Peter the Great St.Petersburg Polytechnic University

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

I. E. Zhukov

Rzhevsky Research Testing Certification Center

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

E. D. Kurinnoy

Open Joint Stock Company "Spetsmedtekhnika"

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

S. G. Tsurikov

5th test center of military unit 09703

Email: vmeda-nio@mil.ru
Russian Federation, Saint Petersburg

References

  1. ГОСТ 34286-2017 «Бронеодежда. Классификация и общие технические требования». – М.: «Стандартинформ», 2018. – 11 с.
  2. Денисов, А.В. Оценка степени тяжести заброневой контузионной травмы при непробитии бронежилета / А.В. Денисов и [др.] // Вестн. Росс. воен.-мед. акад. – 2019. – № 3 (67). – С. 120–126.
  3. Денисов, А.В. Параметры запреградного выступа при непробитии керамического бронежилета / А.В. Денисов и [др.] // Вестн. Росс. воен.-мед. акад. – 2019. – № 4 (68). – С. 95–101.
  4. Озерецковский, Л.Б. Раневая баллистика. История и современное состояние огнестрельного оружия и средств индивидуальной бронезащиты / Л.Б. Озерецковский, Е.К. Гуманенко, В.В. Бояринцев. – СПб.: Калашников, 2006. – 286 с.
  5. Озерецковский, Л.Б. Особенности судебно-медицинской экспертизы при огнестрельных ранениях через бронежилет / Л.Б. Озерецковский, М.В. Тюрин, А.В. Денисов // Судебно-медицинская экспертиза. – 2013. – №. 3 (56). – С. 35–38.
  6. Cai, Z. A three-dimensional finite element modelling of human chest injury following front or side impact loading / Z. Cai [et al.] // J. of vibroegineering. – 2016. – Vol. 18, № 1. – P. 539–550.
  7. Fenne, P. M. Developing a test methodology to moderate levels of injury resulting from BABT / P. M. Fenne, J. Barnes-Warden // Proceedings of Personal Armour Systems Symposium (PASS 2014). – 2014. – 46 p.
  8. Gayzik, F.S. Development of the global human body models consortium mid-sized male full body model / F.S. Gayzik [et al.] // Proceedings of International workshop on human subjects for biomechanical research. – 2011. – Vol. 39. – Р. 12–23
  9. Hayamizu, N. Measurement of impact response of pig lung / N. Hayamizu [et al.] // Proc. of JSME Tokai Branch Conf. – 2003. – Р. 94–95.
  10. Hinsley, D.E. Behind armour blunt trauma to the thorax – physical and biological models / D.E. Hinsley, W. Tam, D. Evison // Proceedings of Personal Armour Systems Symposium (PASS 2002). – Hague, Netherlands, 2002. – 9 p.
  11. Iwamoto, M. Development of advanced human models in THUMS / M. Iwamoto [et al.] // Proc. 6th European LS-DYNA Users’ Conference. – 2007. – Р. 47–56.
  12. Kemper, A. R. Multi-scale biomechanical characterization of human liver and spleen /A. Kemper [et al.] // Proceedings of the 22nd Enhanced Safety of Vehicles Conference. – 2011. – Vol. 11. – P. 195.
  13. Kemper, A.R. Biomechanical response of human spleen in tensile loading / A.R. Kemper, A.C. Santago, J.D. Stitzel [et al.] // J. of biomechanics. – 2012. – Vol. 45, № 2. – P. 348–355.
  14. Lu, Y.C. Statistical modeling of human liver incorporating the variations in shape, size, and material properties / Y.C. Lu [et al.] // Stapp car crash journal. – 2013. – Р. 57.
  15. Maeno, T. Development of a finite element model of the total human model for safety (THUMS) and application to car-pedestrian impacts / T. Maeno, J. Hasegawa // SAE Technical Paper. – 2001. – Vol. 6, № 201. – Р. 54.
  16. Mitsuhashi, N. BodyParts3D: 3D structure database for anatomical concepts / N. Mitsuhashi [et al.] // Nucleic acids research. – 2008. – Vol. 37, № 1. – P. 782–785.
  17. Mohan, P. Development of detailed finite element dummy models / P. Mohan // 6th LS-DYNA Forum, Frankenthal, Germany. – 2007. Р. 13–22
  18. Poulard, D. Unveiling the structural response of the ribcage: contribution of the intercostal muscles to the thoracic mechanical response / D. Poulard, D. Subit // 24th 75 International Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration. – 2015. – № 15. – Р. 387.
  19. Reed, M.P. An anthropometric comparison of current ATDs with the US adult population / M.P. Reed, J.D. Rupp // Traffic injury prevention. – 2013. – Vol. 14, № 7. – P. 703–705.
  20. Roberts, J.C. Modeling nonpenetrating ballistic impact on a human torso / J.C. Roberts [et al.] // Johns Hopkins apl. technical digest. – 2005. – Vol. 26, № 1. – P. 84–92.
  21. Rosen, J. Biomechanical properties of abdominal organs in vivo and postmortem under compression loads / J. Rosen [et al.] // Journal of biomechanical engineering. – 2008. – Vol. 130, № 2. – P. 10–20.
  22. Saraf, H. Mechanical properties of soft human tissues under dynamic loading / H. Saraf [et al.] // Journal of biomechanics. – 2007. – Vol. 40, № 9. – P. 1960–1967.
  23. Shigeta, K. Development of next generation human FE model capable of organ injury prediction / K. Shigeta, Y. Kitagawa, T. Yasuki // Proceedings of the 21st Annual enhanced safety of vehicles. – 2009. – P. 15–18.
  24. Then, C. A method for a mechanical characterisation of human gluteal tissue / C. Then [et al.] // Technology and health care. – 2007. – Vol. 15, № 6. – P. 385–398.
  25. Umale, S. Modeling and validation of the human liver and kidney models / S. Umale [et al.] // IRCOBI Conference Proceedings. – 2013. – NIRC. – Р. 13–84.
  26. Ward, E.E. Modeling the effects of blast on the human thorax using high strain rate viscoelastic properties of human tissue / E.E. Ward // IUTAM symposium on impact biomechanics: from fundamental insights to applications. – Springer, Dordrecht, 2005. – P. 17–24.
  27. Yamada, H. Strength of biological materials / H. Yamada, F.G. Evans // Materials Sciences and Applications. – 2018. – Vol. 9, № 7. – P. 658–667.
  28. Zhao, J. Development of a human body finite element model for restraint system R&D applications / J. Zhao, G. Narwani // The 19th international technical conference on the enhanced safety of vehicles (ESV), Paper. – 2005. – № 05. – Р. 399.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of EP formation in the soft tissues of the human body: 1 - bullet; 2 - armored package; 3 - soft tissues; 4 - temporary cavity

Download (126KB)
3. Fig. 2. Design model of a human torso: a - front view; b - side view

Download (81KB)
4. Fig. 3. Frontal impact of the impactor into the chest: a - direction and area of impact of the impactor; b - location of the displacement sensor

Download (46KB)
5. Fig. 4. Position of the chest when exposed to the impactor: a - before the impact of the impactor; b - 0.02 s after the impact of the impactor

Download (57KB)
6. Fig. 5. Position of the chest when exposed to the impactor (cross-sectional view): a - before the impact of the impactor; b - 0.02 s after the impact of the impactor

Download (39KB)
7. Fig. 6. Firing zones of the calculated model of the human torso

Download (174KB)

Copyright (c) 2020 Denisov A.V., Stepanov M.D., Haraldin N.A., Stepanov A.V., Borovkov A.I., Zhukov I.E., Kurinnoy E.D., Tsurikov S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies