Pathogenetic approaches to enhancing local treatment strategies for skin burns

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study examined the pathogenetic mechanisms of burn wound deepening and confirmed approaches for optimizing local burn treatment strategies. In Russia, approximately 300,000 burn cases are registered annually, the majority of which are superficial and partial-thickness burns. A well-studied occurrence in burn pathology is the progressive deepening of wounds over time. Fundamental principles explaining this phenomenon were established long ago. Some tissues undergo instantaneous necrosis due to thermal exposure (primary necrosis zone), whereas other tissues undergo progressive necrosis caused by a cascade of complex pathogenetic changes (secondary necrosis zone). Understanding the early pathogenetic mechanisms initiated in the early phase of thermal injury may contribute to the development of new therapeutic approaches. A comprehensive literature review was conducted using electronic databases (i.e., eLibrary, PubMed, Scopus, Google Scholar, ResearchGate, and ScienceDirect) to analyze Russian and international studies on burn necrosis progression. The primary contributors to secondary necrosis in skin burns (i.e., tissue hyperthermia, microcirculatory dysfunction, and inflammation) are associated with inflammatory cascade reactions involving multiple mechanisms, including reactive oxygen species-mediated cell damage, apoptosis initiation, neutrophil extracellular trap formation, autophagy, and other processes. Burn-induced cell death leads to the release of damage-associated molecular patterns, whereas skin barrier disruption facilitates the penetration of pathogen-associated molecular patterns into tissues, amplifying the inflammatory response. These processes may be prevented, which may help reduce the depth of the burn. Experimental and clinical studies on various pharmacological agents and drug formulations aimed at stopping necrosis progression indicate that erythropoietin derivatives, anti-cytokine agents and their combinations, complement activation inhibitors, antioxidants, mitophagy stimulators (e.g., PTEN-induced kinase 1 and ubiquitin ligase), and other active compounds reduce necrotic expansion. Furthermore, nanoemulsions and hydrogels developed using microfluidic technology, along with other modern drug formulations, potentially prevent progressive tissue necrosis and enhance the biological availability of active substances. Therefore, multi-targeted therapies that address all pathogenetic components of necrosis progression should be developed.

About the authors

Igor’ V. Chmyrev

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-5552-0324
SPIN-code: 2781-5408
Scopus Author ID: 22633560500

MD. Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Saint Petersburg

Boris A. Paramonov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0003-9343-0009
SPIN-code: 4540-8143

MD. Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Pavel A. Yastrebov

Kirov Military Medical Academy

Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-7174-8719
SPIN-code: 3524-6288

cardiovascular surgeon

Russian Federation, Saint Petersburg

Levon K. Avetisyan

The military unit

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-5407-114X
SPIN-code: 3021-2428

military doctor

Chebarkul, Chelyabinsk region

References

  1. Federal State Statistics Service (Rosstat). Healthcare in Russia. Statistical compilation. Moscow: Federal State Statistics Service, 2015. 174 р. (In Russ.)
  2. Alekseev АА, Turnikov UI. Main statistical indicators of the work of burn hospitals in the Russian Federation for 2015. In: Thermal injuries and its consequences: proceedings of all-Russian scientific and practical conference with international participation; 28–29 September 2016. Yalta; 2016. P. 17–20. (In Russ.)
  3. Kobelev KS, Midlenko VI. Conservative treatment of minor and moderate burns. Ulyanovsk Medico-biological Journal. 2017;4:8–19. EDN: YLCIIX doi: 10.23648/UMBJ.2017.28.8735
  4. Paramonov BA, Porembsky YO, Yablonsky VG. Burns: guidance for doctors. Saint Petersburg: SpetsLit; 2002. 480 р. (In Russ.)
  5. Jackson DM The diagnosis of the depth of burning. Br J Surg. 1953;40(164):588–596. doi: 10.1002/bjs.18004016413
  6. Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19(243). EDN: URSYKP doi: 10.1186/s13054-015-0961-2
  7. Tobalem M, Harder Y, Tschanz E, et al. First-aid with warm water delays burn progression and increases skin survival. J Plast Reconstr Aesthet Surg. 2013;66(2):260–266. doi: 10.1016/j.bjps.2012.09.014
  8. Palackic A, Jay JW, Duggan RP, et al. Therapeutic strategies to reduce burn wound conversion. Medicina. 2022;58(7):922. EDN: EOFMBU doi: 10.3390/medicina58070922
  9. Goodwin NS Burn first aid issues again «Not seeing the forest for the trees». Burns. 2021;47(4):970–972. doi: 10.1016/j.burns.2020.12.026
  10. Schmauss D, Wettstein R, Tobalem M, et al. New treatment strategies to reduce burn wound progression. GMS Ger Plast Reconstr Aesthet Surg. 2014;4. doi: 10.3205/gpras000020
  11. Zinoviev EV, Alov NV, Apchel AV, et al. Effectiveness of antiseptic solutions in treating dermal burns. Bulletin of the Russian Military Medical Academy. 2014;(48)4:173–181. EDN: TCFUMV
  12. Lu M, Zhao J, Wang X, et al. Research advances in prevention and treatment of burn wound deepening in early stage. Front Surg. 2022;9:1015411. EDN: AREJBO doi: 10.3389/fsurg.2022.1015411
  13. Nielson CB, Duethman NC, Howard JM, et al. Burns: pathophysiology of systemic complications and current management. J Burn Care Res. 2017;38(1):469–481. doi: 10.1097/BCR.0000000000000355
  14. Hamblin M. Novel pharmacotherapy for burn wounds: what are the advancements. Expert Opin Pharmacother. 2019;20(3):305–321. doi: 10.1080/14656566.2018.1551880
  15. Lanier ST, McClain SA, Lin F, et al. Spatiotemporal progression of cell death in the zone of ischemia surrounding burns. Wound Repair Regen. 2011;19(5):622–632. doi: 10.1111/j.1524-475X.2011.00725.x
  16. Hirth D, McClain SA, Singer AJ, et al. Endothelial necrosis at 1 hour postburn predicts progression of tissue injury. Wound Repair Regen. 2013;21(4):563–570. doi: 10.1111/wrr.12053
  17. Salibian AA, Rosario ATD, Severo LAM, et al. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns. Burns. 2016;42(5):1025–1035. doi: 10.1016/j.burns.2015.11.007
  18. Shapovalov SG; Aleksanin SS, Alekseev AA, editors. Emergency combustiology. Saint Petersburg: Politechnika-servis; 2014. 164 р. (In Russ.) EDN: SZYJIP
  19. Matveenko AV, Taracenko MY, Samarev AV Multimodal fluid replacement technique in burned patients. Military Medical Journal. 2022; 343(8):28–34. EDN: NVTCPV doi: 10.52424/00269050_2022_343_8_28
  20. Simonyan EV, Osikov MV, Ageeva AA, et al. Modern aspects of pathophysiology of thermal injury. Modern Problems of Science and Education. 2020;(3):141–141. EDN: ODPJVT doi: 10.17513/spno.29723
  21. Korkmaz HI, Flokstra G, Waasdorp M., et al. The complexity of the post-burn immune response: an overview of the associated local and systemic complications. Cells. 2023;12(3):345. EDN: VNDEEO doi: 10.3390/cells12030345
  22. Macri LK, Singer AJ, Taira BR, et al. Immediate burn excision fails to reduce injury progression. J Burn Care Res. 2013;34(3):e153–e160. doi: 10.1097/BCR.0b013e31828fc8cd
  23. Choi J, Kim R, Kim J, et al. Nicorandil reduces burn wound progression by enhancing skin blood flow. J Plast Reconstr Aesthet Surg. 2018;71(8):1196–1206. doi: 10.1016/j.bjps.2018.03.020
  24. Singer A, McClain S The effects of a high-potency topical steroid on cutaneous healing of burns in pigs. Acad Emerg Med. 2002;9(10):977–982. doi: 10.1111/j.1553-2712.2002.tb02128.x
  25. Isik S, Sahin U, Ilgan S, et al. Saving the zone of stasis in burns with recombinant tissue-type plasminogen activator (r-tPA): an experimental study in rats. Burns. 1998;24(3):217–223. EDN: ABILXV doi: 10.1016/s0305-4179(97)00116-2
  26. Oremus M, Hanson M, Whitlock R, et al. The uses of heparin to treat burn injury. Evid Rep Technol Assess (Full Rep). 2006;148:1–58.
  27. Cato LD, Bailiff B, Price J, et al. Heparin resistance in severe thermal injury: a prospective cohort study. Burns Trauma. 2021;9(tkab032) EDN: NZYGRG doi: 10.1093/burnst/tkab032
  28. Ponomarev DB, Stepanov AV, Ivchenko EV, et al. Inflammatory response and its correction in forming a host response to exposure to adverse environmental factors. Bulletin of the Russian Military Medical Academy. 2022;24(1):165–177. EDN: CGRARY doi: 10.17816/brmma83092
  29. Mulder PPG, Vlig M, Boekema BKHL, et al. Persistent systemic inflammation in patients with severe burn injury is accompanied by influx of immature neutrophils and shifts in T cell subsets and cytokine profiles. Front Immunol. 2021;11:621222. EDN: PVILEY doi: 10.3389/fimmu.2020.621222
  30. Qian LW, Evani SJ, Chen P, et al. Cerium nitrate treatment provides eschar stabilization through reduction in bioburden, DAMPs, and inflammatory cytokines in a rat scald burn model. J Burn Care Res. 2020;41(3):576–584. doi: 10.1093/jbcr/irz199
  31. Simbirtsev AS Cytokines in the pathogenesis and treatment of human deseases. Saint Petersburg: Foliant; 2018. 512 p. (In Russ.) EDN: XIZEJB
  32. Singer A, Towery H, McClain S Effect of tadalafil on reduction of necrosis in the ischemic zone in a rat comb burn model. Burns. 2018;44(6):1427–1432. doi: 10.1016/j.burns.2018.05.013
  33. Dolgachev VA, Ciotti S, Liechty E, et al. Dermal nanoemulsion treatment reduces burn wound conversion and improves skin healing in a porcine model of thermal burn injury. J Burn Care Res. 2021;42(6):1232–1242. EDN: HUCQZU doi: 10.1093/jbcr/irab118
  34. Bohr S, Patel SJ, Shen K, et al. Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns. Proc Natl Acad Sci USA. 2013;110(9):3513–3518. doi: 10.1073/pnas.1214099110
  35. Günter CI, Machens HG, Ilg FP, et al. Randomized controlled trial: regenerative effects, efficacy and safety of erythropoietin in burn and scalding injuries. Front Pharmacol. 2018;9:951. doi: 10.3389/fphar.2018.00951
  36. Osikov MV, Simonyan EV, Basharova OT. Effect of a transdermal film with erythropoietin on lymphocyte death and free radical oxidation in blood of rats with experimental thermal injury. Pathological Physiology and Experimental Therapy. 2019;63(2):72–79. EDN: EHFRLQ doi: 10.25557/0031-2991.2019.02.72-79
  37. Xiao M, Li L, Li C, et al. 3,4-methylenedioxy-β-nitrostyrene ameliorates experimental burn wound progression by inhibiting the NLRP3 inflammasome activation. Plast Reconstr Surg. 2016;137(3):566e–575e. EDN: WVCYDH doi: 10.1097/01.prs.0000479972.06934.83
  38. Sun LT, Friedrich E, Heuslein JL, et al. Reduction of burn progression with topical delivery of (antitumor necrosis factor-α)-hyaluronic acid conjugates. Wound Repair Regen. 2012; 20(4): 563–572. doi: 10.1111/j.1524-475X.2012.00813.x
  39. Friedrich EE, Azofiefa A, Fisch E, Washburn NR Local delivery of antitumor necrosis factor-α through conjugation to hyaluronic acid: dosing strategies and early healing effects in a rat burn model. J Burn Care Res. 2015;36(2):e90–e101. doi: 10.1097/BCR.0000000000000140
  40. Kalmar CL, White-Dzuro CG, Pollins A, et al. Successful prevention of secondary burn progressions using topical tacrolimus and infliximab hydrogel. J Burn Care Res. 2022;43(Suppl 1):S32–S33. doi: 10.1093/jbcr/irac012.050
  41. Korkmaz HI, Krijnen PAJ, Ulrich MMW The role of complement in the acute phase response after burns. Burns. 2017. 43(7):1390–1399. doi: 10.1016/j.burns.2017.03.007
  42. Li L, Xiao M. Role of mitophagy in burn wound progression and wound healing. In: Gorbunov NV, Schneider M, editors. Autophagy in current trends in cellular physiology and pathology. InTech; 2016. doi: 10.5772/63711
  43. Görlach A, Bertram K, Hudecova S, et al. Calcium and ROS: a mutual interplay. Redox Biol. 2015;216:260–271. EDN: VFPRVF doi: 10.1016/j.redox.2015.08.010
  44. Pinton P, Giorgi C, Siviero R, et al. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–6418. EDN: YAVVMV doi: 10.1038/onc.2008.308
  45. Prabhakaran HS, Hu D, He W, et al. Mitochondrial dysfunction and mitophagy: crucial players in burn trauma and wound healing. Burns Trauma. 2023;11:tkad029. EDN: VQLUCN doi: 10.1093/burnst/tkad029
  46. Xiao M, Li L, Hu Q, et al. Rapamycin reduces burn wound progression by enhancing autophagy in deep second-degree burn in rats. Wound Repair Regen. 2013;21(6):852–859. EDN: YDYGDT doi: 10.1111/wrr.12090
  47. El Ayadi A, Salsbury JR, Enkhbaatar P, et al. Metal chelation attenuates oxidative stress, inflammation, and vertical burn progression in a porcine brass comb burn model. Redox Biol. 2021;45:102034. EDN: KERZAW doi: 10.1016/j.redox.2021.102034
  48. Fang Q, Guo S, Zhou H, et al. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci Rep. 2017;7:41440. EDN: AGIQOD doi: 10.1038/srep41440
  49. Pushkina TA, Tokayev ES, Popova TS, et al. Superoxide dismutase as a component of antioxidant therapy: current state of the issue and prospects. Russian Sklifosovsky Journal of «Emergency Medical Care. 2016;(4):42–47. EDN: XHJCBH
  50. Paramonov BA, Galenko-Yaroshevskii VP, Turkovskii II, et al. Ointments with superoxide dismutase and interleukin-1beta: effect on reparative processes and impedance of burn wound. Bull Exp Biol Med. 2005;139(1):56–59. EDN: LJBYIV doi: 10.1007/s10517-005-0211-8
  51. Zhang D, Wang B, Sun Y, et al. Injectable enzyme-based hydrogel matrix with precisely oxidative stress defense for promoting dermal repair of burn wound. Macromol Biosci. 2020;20(6):e2000036. EDN: PQIUNJ doi: 10.1002/mabi.202000036
  52. Yang C, Chen Y, Huang H, et al. ROS-eliminating carboxymethyl chitosan hydrogel to enhance burn wound-healing efficacy. Front Pharmacol. 2021;12:679580. EDN: WSOZZN doi: 10.3389/fphar.2021.679580
  53. Margulis BA, Guzhova IV Dual role of chaperones in the response of a cell and of a whole organism to stress. Tsitologia. 2009;51(3):219–228. EDN: OJIJSB

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».