Pathogenetic approaches to enhancing local treatment strategies for skin burns
- Authors: Chmyrev I.V.1, Paramonov B.A.1, Yastrebov P.A.1, Avetisyan L.K.2
-
Affiliations:
- Kirov Military Medical Academy
- The military unit
- Issue: Vol 27, No 1 (2025)
- Pages: 125-134
- Section: Review
- URL: https://journals.rcsi.science/1682-7392/article/view/292171
- DOI: https://doi.org/10.17816/brmma636896
- ID: 292171
Cite item
Abstract
This study examined the pathogenetic mechanisms of burn wound deepening and confirmed approaches for optimizing local burn treatment strategies. In Russia, approximately 300,000 burn cases are registered annually, the majority of which are superficial and partial-thickness burns. A well-studied occurrence in burn pathology is the progressive deepening of wounds over time. Fundamental principles explaining this phenomenon were established long ago. Some tissues undergo instantaneous necrosis due to thermal exposure (primary necrosis zone), whereas other tissues undergo progressive necrosis caused by a cascade of complex pathogenetic changes (secondary necrosis zone). Understanding the early pathogenetic mechanisms initiated in the early phase of thermal injury may contribute to the development of new therapeutic approaches. A comprehensive literature review was conducted using electronic databases (i.e., eLibrary, PubMed, Scopus, Google Scholar, ResearchGate, and ScienceDirect) to analyze Russian and international studies on burn necrosis progression. The primary contributors to secondary necrosis in skin burns (i.e., tissue hyperthermia, microcirculatory dysfunction, and inflammation) are associated with inflammatory cascade reactions involving multiple mechanisms, including reactive oxygen species-mediated cell damage, apoptosis initiation, neutrophil extracellular trap formation, autophagy, and other processes. Burn-induced cell death leads to the release of damage-associated molecular patterns, whereas skin barrier disruption facilitates the penetration of pathogen-associated molecular patterns into tissues, amplifying the inflammatory response. These processes may be prevented, which may help reduce the depth of the burn. Experimental and clinical studies on various pharmacological agents and drug formulations aimed at stopping necrosis progression indicate that erythropoietin derivatives, anti-cytokine agents and their combinations, complement activation inhibitors, antioxidants, mitophagy stimulators (e.g., PTEN-induced kinase 1 and ubiquitin ligase), and other active compounds reduce necrotic expansion. Furthermore, nanoemulsions and hydrogels developed using microfluidic technology, along with other modern drug formulations, potentially prevent progressive tissue necrosis and enhance the biological availability of active substances. Therefore, multi-targeted therapies that address all pathogenetic components of necrosis progression should be developed.
Full Text
##article.viewOnOriginalSite##About the authors
Igor’ V. Chmyrev
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-5552-0324
SPIN-code: 2781-5408
Scopus Author ID: 22633560500
MD. Dr. Sci. (Medicine), Assistant Professor
Russian Federation, Saint PetersburgBoris A. Paramonov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0003-9343-0009
SPIN-code: 4540-8143
MD. Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgPavel A. Yastrebov
Kirov Military Medical Academy
Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-7174-8719
SPIN-code: 3524-6288
cardiovascular surgeon
Russian Federation, Saint PetersburgLevon K. Avetisyan
The military unit
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-5407-114X
SPIN-code: 3021-2428
military doctor
Chebarkul, Chelyabinsk regionReferences
- Federal State Statistics Service (Rosstat). Healthcare in Russia. Statistical compilation. Moscow: Federal State Statistics Service, 2015. 174 р. (In Russ.)
- Alekseev АА, Turnikov UI. Main statistical indicators of the work of burn hospitals in the Russian Federation for 2015. In: Thermal injuries and its consequences: proceedings of all-Russian scientific and practical conference with international participation; 28–29 September 2016. Yalta; 2016. P. 17–20. (In Russ.)
- Kobelev KS, Midlenko VI. Conservative treatment of minor and moderate burns. Ulyanovsk Medico-biological Journal. 2017;4:8–19. EDN: YLCIIX doi: 10.23648/UMBJ.2017.28.8735
- Paramonov BA, Porembsky YO, Yablonsky VG. Burns: guidance for doctors. Saint Petersburg: SpetsLit; 2002. 480 р. (In Russ.)
- Jackson DM The diagnosis of the depth of burning. Br J Surg. 1953;40(164):588–596. doi: 10.1002/bjs.18004016413
- Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19(243). EDN: URSYKP doi: 10.1186/s13054-015-0961-2
- Tobalem M, Harder Y, Tschanz E, et al. First-aid with warm water delays burn progression and increases skin survival. J Plast Reconstr Aesthet Surg. 2013;66(2):260–266. doi: 10.1016/j.bjps.2012.09.014
- Palackic A, Jay JW, Duggan RP, et al. Therapeutic strategies to reduce burn wound conversion. Medicina. 2022;58(7):922. EDN: EOFMBU doi: 10.3390/medicina58070922
- Goodwin NS Burn first aid issues again «Not seeing the forest for the trees». Burns. 2021;47(4):970–972. doi: 10.1016/j.burns.2020.12.026
- Schmauss D, Wettstein R, Tobalem M, et al. New treatment strategies to reduce burn wound progression. GMS Ger Plast Reconstr Aesthet Surg. 2014;4. doi: 10.3205/gpras000020
- Zinoviev EV, Alov NV, Apchel AV, et al. Effectiveness of antiseptic solutions in treating dermal burns. Bulletin of the Russian Military Medical Academy. 2014;(48)4:173–181. EDN: TCFUMV
- Lu M, Zhao J, Wang X, et al. Research advances in prevention and treatment of burn wound deepening in early stage. Front Surg. 2022;9:1015411. EDN: AREJBO doi: 10.3389/fsurg.2022.1015411
- Nielson CB, Duethman NC, Howard JM, et al. Burns: pathophysiology of systemic complications and current management. J Burn Care Res. 2017;38(1):469–481. doi: 10.1097/BCR.0000000000000355
- Hamblin M. Novel pharmacotherapy for burn wounds: what are the advancements. Expert Opin Pharmacother. 2019;20(3):305–321. doi: 10.1080/14656566.2018.1551880
- Lanier ST, McClain SA, Lin F, et al. Spatiotemporal progression of cell death in the zone of ischemia surrounding burns. Wound Repair Regen. 2011;19(5):622–632. doi: 10.1111/j.1524-475X.2011.00725.x
- Hirth D, McClain SA, Singer AJ, et al. Endothelial necrosis at 1 hour postburn predicts progression of tissue injury. Wound Repair Regen. 2013;21(4):563–570. doi: 10.1111/wrr.12053
- Salibian AA, Rosario ATD, Severo LAM, et al. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns. Burns. 2016;42(5):1025–1035. doi: 10.1016/j.burns.2015.11.007
- Shapovalov SG; Aleksanin SS, Alekseev AA, editors. Emergency combustiology. Saint Petersburg: Politechnika-servis; 2014. 164 р. (In Russ.) EDN: SZYJIP
- Matveenko AV, Taracenko MY, Samarev AV Multimodal fluid replacement technique in burned patients. Military Medical Journal. 2022; 343(8):28–34. EDN: NVTCPV doi: 10.52424/00269050_2022_343_8_28
- Simonyan EV, Osikov MV, Ageeva AA, et al. Modern aspects of pathophysiology of thermal injury. Modern Problems of Science and Education. 2020;(3):141–141. EDN: ODPJVT doi: 10.17513/spno.29723
- Korkmaz HI, Flokstra G, Waasdorp M., et al. The complexity of the post-burn immune response: an overview of the associated local and systemic complications. Cells. 2023;12(3):345. EDN: VNDEEO doi: 10.3390/cells12030345
- Macri LK, Singer AJ, Taira BR, et al. Immediate burn excision fails to reduce injury progression. J Burn Care Res. 2013;34(3):e153–e160. doi: 10.1097/BCR.0b013e31828fc8cd
- Choi J, Kim R, Kim J, et al. Nicorandil reduces burn wound progression by enhancing skin blood flow. J Plast Reconstr Aesthet Surg. 2018;71(8):1196–1206. doi: 10.1016/j.bjps.2018.03.020
- Singer A, McClain S The effects of a high-potency topical steroid on cutaneous healing of burns in pigs. Acad Emerg Med. 2002;9(10):977–982. doi: 10.1111/j.1553-2712.2002.tb02128.x
- Isik S, Sahin U, Ilgan S, et al. Saving the zone of stasis in burns with recombinant tissue-type plasminogen activator (r-tPA): an experimental study in rats. Burns. 1998;24(3):217–223. EDN: ABILXV doi: 10.1016/s0305-4179(97)00116-2
- Oremus M, Hanson M, Whitlock R, et al. The uses of heparin to treat burn injury. Evid Rep Technol Assess (Full Rep). 2006;148:1–58.
- Cato LD, Bailiff B, Price J, et al. Heparin resistance in severe thermal injury: a prospective cohort study. Burns Trauma. 2021;9(tkab032) EDN: NZYGRG doi: 10.1093/burnst/tkab032
- Ponomarev DB, Stepanov AV, Ivchenko EV, et al. Inflammatory response and its correction in forming a host response to exposure to adverse environmental factors. Bulletin of the Russian Military Medical Academy. 2022;24(1):165–177. EDN: CGRARY doi: 10.17816/brmma83092
- Mulder PPG, Vlig M, Boekema BKHL, et al. Persistent systemic inflammation in patients with severe burn injury is accompanied by influx of immature neutrophils and shifts in T cell subsets and cytokine profiles. Front Immunol. 2021;11:621222. EDN: PVILEY doi: 10.3389/fimmu.2020.621222
- Qian LW, Evani SJ, Chen P, et al. Cerium nitrate treatment provides eschar stabilization through reduction in bioburden, DAMPs, and inflammatory cytokines in a rat scald burn model. J Burn Care Res. 2020;41(3):576–584. doi: 10.1093/jbcr/irz199
- Simbirtsev AS Cytokines in the pathogenesis and treatment of human deseases. Saint Petersburg: Foliant; 2018. 512 p. (In Russ.) EDN: XIZEJB
- Singer A, Towery H, McClain S Effect of tadalafil on reduction of necrosis in the ischemic zone in a rat comb burn model. Burns. 2018;44(6):1427–1432. doi: 10.1016/j.burns.2018.05.013
- Dolgachev VA, Ciotti S, Liechty E, et al. Dermal nanoemulsion treatment reduces burn wound conversion and improves skin healing in a porcine model of thermal burn injury. J Burn Care Res. 2021;42(6):1232–1242. EDN: HUCQZU doi: 10.1093/jbcr/irab118
- Bohr S, Patel SJ, Shen K, et al. Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns. Proc Natl Acad Sci USA. 2013;110(9):3513–3518. doi: 10.1073/pnas.1214099110
- Günter CI, Machens HG, Ilg FP, et al. Randomized controlled trial: regenerative effects, efficacy and safety of erythropoietin in burn and scalding injuries. Front Pharmacol. 2018;9:951. doi: 10.3389/fphar.2018.00951
- Osikov MV, Simonyan EV, Basharova OT. Effect of a transdermal film with erythropoietin on lymphocyte death and free radical oxidation in blood of rats with experimental thermal injury. Pathological Physiology and Experimental Therapy. 2019;63(2):72–79. EDN: EHFRLQ doi: 10.25557/0031-2991.2019.02.72-79
- Xiao M, Li L, Li C, et al. 3,4-methylenedioxy-β-nitrostyrene ameliorates experimental burn wound progression by inhibiting the NLRP3 inflammasome activation. Plast Reconstr Surg. 2016;137(3):566e–575e. EDN: WVCYDH doi: 10.1097/01.prs.0000479972.06934.83
- Sun LT, Friedrich E, Heuslein JL, et al. Reduction of burn progression with topical delivery of (antitumor necrosis factor-α)-hyaluronic acid conjugates. Wound Repair Regen. 2012; 20(4): 563–572. doi: 10.1111/j.1524-475X.2012.00813.x
- Friedrich EE, Azofiefa A, Fisch E, Washburn NR Local delivery of antitumor necrosis factor-α through conjugation to hyaluronic acid: dosing strategies and early healing effects in a rat burn model. J Burn Care Res. 2015;36(2):e90–e101. doi: 10.1097/BCR.0000000000000140
- Kalmar CL, White-Dzuro CG, Pollins A, et al. Successful prevention of secondary burn progressions using topical tacrolimus and infliximab hydrogel. J Burn Care Res. 2022;43(Suppl 1):S32–S33. doi: 10.1093/jbcr/irac012.050
- Korkmaz HI, Krijnen PAJ, Ulrich MMW The role of complement in the acute phase response after burns. Burns. 2017. 43(7):1390–1399. doi: 10.1016/j.burns.2017.03.007
- Li L, Xiao M. Role of mitophagy in burn wound progression and wound healing. In: Gorbunov NV, Schneider M, editors. Autophagy in current trends in cellular physiology and pathology. InTech; 2016. doi: 10.5772/63711
- Görlach A, Bertram K, Hudecova S, et al. Calcium and ROS: a mutual interplay. Redox Biol. 2015;216:260–271. EDN: VFPRVF doi: 10.1016/j.redox.2015.08.010
- Pinton P, Giorgi C, Siviero R, et al. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–6418. EDN: YAVVMV doi: 10.1038/onc.2008.308
- Prabhakaran HS, Hu D, He W, et al. Mitochondrial dysfunction and mitophagy: crucial players in burn trauma and wound healing. Burns Trauma. 2023;11:tkad029. EDN: VQLUCN doi: 10.1093/burnst/tkad029
- Xiao M, Li L, Hu Q, et al. Rapamycin reduces burn wound progression by enhancing autophagy in deep second-degree burn in rats. Wound Repair Regen. 2013;21(6):852–859. EDN: YDYGDT doi: 10.1111/wrr.12090
- El Ayadi A, Salsbury JR, Enkhbaatar P, et al. Metal chelation attenuates oxidative stress, inflammation, and vertical burn progression in a porcine brass comb burn model. Redox Biol. 2021;45:102034. EDN: KERZAW doi: 10.1016/j.redox.2021.102034
- Fang Q, Guo S, Zhou H, et al. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci Rep. 2017;7:41440. EDN: AGIQOD doi: 10.1038/srep41440
- Pushkina TA, Tokayev ES, Popova TS, et al. Superoxide dismutase as a component of antioxidant therapy: current state of the issue and prospects. Russian Sklifosovsky Journal of «Emergency Medical Care. 2016;(4):42–47. EDN: XHJCBH
- Paramonov BA, Galenko-Yaroshevskii VP, Turkovskii II, et al. Ointments with superoxide dismutase and interleukin-1beta: effect on reparative processes and impedance of burn wound. Bull Exp Biol Med. 2005;139(1):56–59. EDN: LJBYIV doi: 10.1007/s10517-005-0211-8
- Zhang D, Wang B, Sun Y, et al. Injectable enzyme-based hydrogel matrix with precisely oxidative stress defense for promoting dermal repair of burn wound. Macromol Biosci. 2020;20(6):e2000036. EDN: PQIUNJ doi: 10.1002/mabi.202000036
- Yang C, Chen Y, Huang H, et al. ROS-eliminating carboxymethyl chitosan hydrogel to enhance burn wound-healing efficacy. Front Pharmacol. 2021;12:679580. EDN: WSOZZN doi: 10.3389/fphar.2021.679580
- Margulis BA, Guzhova IV Dual role of chaperones in the response of a cell and of a whole organism to stress. Tsitologia. 2009;51(3):219–228. EDN: OJIJSB
Supplementary files
