Dynamics of aquaporin content in the aero-hematic barrier during the latent phase of toxic pulmonary edema
- Authors: Sizova D.T.1, Tolkach P.G.1, Bardin A.A.2, Babakov V.N.2,3, Vengerovich N.G.4, Chepur S.V.5, Basharin V.A.1
-
Affiliations:
- Kirov Military Medical Academy
- Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology
- Saint Petersburg State Pediatric Medical University
- State Research and Testing Institute of Military Medicine
- State Scientific-Research Test Institute of Military Medicine
- Issue: Vol 26, No 4 (2024)
- Pages: 541-550
- Section: Original Study Article
- URL: https://journals.rcsi.science/1682-7392/article/view/285202
- DOI: https://doi.org/10.17816/brmma634392
- ID: 285202
Cite item
Abstract
The study evaluates the dynamics of aquaporin (aquaporin-1, aquaporin-5, and epithelial sodium channel) content in the aero-hematic barrier during the latent phase of rat intoxication with carbonyl chloride (phosgene), thermal decomposition products of fluoroplast containing perfluoroisobutylene, and nitrogen dioxide. Rat intoxication was modeled using average lethal concentrations of these toxic substances. At 30 and 60 minutes post-exposure, pulmonary coefficient was measured and histological and immunohistochemical studies were performed. Western blot analysis was used to determine the aquaporin-5 content in rat lung tissues exposed to the thermal decomposition products of fluoroplast. It was found that rat intoxication with phosgene and thermal decomposition products of fluoroplast containing perfluoroisobutylene led to an increase in the relative content of aquaporin-5 and epithelial sodium channel-positive cells in lung tissues as early as 30 minutes post-exposure. At 60 minutes post-exposure, there were signs of the interstitial phase of toxic pulmonary edema and an increase in the pulmonary coefficient. Exposure to nitrogen dioxide resulted in an increase in the pulmonary coefficient and the relative content of aquaporin-5-positive cells, as well as pronounced signs of the interstitial phase of edema 30 minutes post-exposure. Western blot analysis using anti-aquaporin-5 antibodies revealed an increase in the staining intensity of complexes with molecular weights of 25 and 50 kDa, suggesting the formation of aquaporin-5 tetramers and their likely translocation from the intracellular compartment to the plasma membrane of alveolar cells. These findings indicate that aquaporin-5 plays an important role in the pathogenesis of toxic pulmonary edema induced by the studied pneumotoxicants. Targeting these molecules may be a promising approach for pathogenetic therapy of poisoning.
Full Text
##article.viewOnOriginalSite##About the authors
Daria T. Sizova
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-7426-1746
SPIN-code: 2769-5930
applicant
Russian Federation, Saint PetersburgPavel G. Tolkach
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-5013-2923
SPIN-code: 4304-1890
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgAlexander A. Bardin
Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology
Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-5551-1815
SPIN-code: 9987-7872
researcherRussian Federation, Kuzmolovskoye
Vladimir N. Babakov
Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology; Saint Petersburg State Pediatric Medical University
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8824-8929
Scopus Author ID: 6602180814
Cand. Sci. (Biology)
Russian Federation, Kuzmolovskoye; Saint PetersburgNikolay G. Vengerovich
State Research and Testing Institute of Military Medicine
Email: gniiiivm_5@mil.ru
ORCID iD: 0000-0003-3219-341X
SPIN-code: 6690-9649
Scopus Author ID: 55639823300
MD, Dr. Sci. (Medicine), associate professor
Russian Federation, Saint-PetersburgSergey V. Chepur
State Scientific-Research Test Institute of Military Medicine
Email: gniiiivm_5@mil.ru
ORCID iD: 0000-0002-5324-512X
SPIN-code: 3828-6730
MD, Dr. Sci. (Medicine), professor
Russian Federation, Saint PetersburgVadim A. Basharin
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8548-6836
SPIN-code: 4671-8386
MD, Dr. Sci. (Med.), professor
Russian Federation, Saint PetersburgReferences
- Basharin VA, Chepur SV, Shchegolev AV, et al. The role and place of respiratory support in the treatment regimens for acute pulmonary edema caused by inhalation of toxic substances. Military Medical Journal. 2019;340(11):26–32. (In Russ.) EDN: JPJONV
- Shapovalov ID, Yaroshenko DM; Tolkach PG, et al. Experimental evaluation of the effectiveness of oxygen and prednisolone for the correction of toxic pulmonary edema caused by intoxication by thermal-destruction products of nitrocellulose. Medline.ru. 2024;25(1):205–219. EDN: BWCVDB
- Patocka J. Perfluoroisobutene: poisonous choking gas. Mil Med Sci Lett. 2019;88(3):98–105. doi: 10.31482/mmsl.2019.006
- Jugg BJ. Toxicology and treatment of phosgene induced lung injury. In: Chemical Warfare Toxicology. Fundamental Aspects. Edition: 1. Chapter: 4. Publisher: RSC. Worek F, Jener J, Thiermann H, eds. 2016;1:117–153. doi: 10.1039/9781782622413-00117
- Berthiaume Y, Folkesson HG, Matthay MA. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol (1985). 2002;93(6):2207–2213. doi: 10.1152/japplphysiol.01201.2001
- Skowronska A, Tanski D, Jaskiewicz L, Skowronski MT. Modulation by steroid hormones and other factors on the expression of aquaporin-1 and aquaporin-5. Vitam Horm. 2020;112;209–242. doi: 10.1016/bs.vh.2019.08.006
- Zeuthen T. General models for water transport across leaky epithelia. Int Rev Cytol. 2002;215;285–317. doi: 10.1016/s0074-7696(02)15013-3
- Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol. 2007;159(3):350–359. doi: 10.1016/j.resp.2007.05.010
- King L, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Phpiol. 1996;58:619–648. doi: 10.1146/annurev.ph.58.030196.003155
- Ohinata A, Nagai K, Nomura J, et al. Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells. Biochem Biophys Res Commun. 2005;326(3):521–526. doi: 10.1016/j.bbrc.2004.10.216
- Sugita M, Ferraro P, Dagenais A, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med. 2003;167(10):1440–1450. doi: 10.1164/rccm.200204-312OC
- Hasan B, Li FS, Siyit A, et al. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respir Physiol Neurobiol. 2014;200:40–45. doi: 10.1016/j.resp.2014.05.008
- Ishibashi H, Suzuki S, Moriya T, et al. Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab. 2003:88(5):2309–2317. doi: 10.1210/jc.2002-021353
- Cai-Zhi S, Hua Sh, Xiao-Wei H, et al. Effect of dobutamine on lung aquaporin 5 in endotoxine shockinduced acute lung injury rabbit. J Thorac Dis. 2015;7(8):1467–1477. doi: 10.3978/j.issn.2072-1439.2015.08.22
- Tolkach PG, Basharin VA, Chepur SV, et al. Ultrastructural changes in the air-blood barrier of rats in acute intoxication with furoplast pyrolysis products. Bulletin of Experimental Biology and Medicine. 2020;169(2):235–241. (In Russ.) EDN: USZBXQ doi: 10.1007/s10517-020-04866-x
- Tiunov LA, Golovenko NYa, Galkin BN, Barinov VA. Biochemical mechanisms of toxicity of nitrogen oxides. Biology Bulletin Reviews. 1991;111(5):738–750. (In Russ.) doi: 10.1007/s10540-005-2577-2
- Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed. 2004;43(33):4278–4290. doi: 10.1007/s10540-005-2577-2
- Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3:5–13. doi: 10.1513/pats.200510-109JH
- Sorbo JG, Moe SE, Holen T. Early upregulation in nasal epithelium and strong expression in olfactory bulb glomeruli suggest a role for Aquaporin-4 in olfaction. FEBS Lett. 2007;581(25):4884–4890. doi: 10.1016/j.febslet.2007.09.018
- Alam J, Jeon S, Choi Y. Determination of Anti-aquaporin 5 autoantibodies by immunofluorescence cytochemistry. Methods Mol Biol. 2019;1901:79–87. doi: 10.1007/978-1-4939-8949-2_6
Supplementary files
