Vesiculation red blood cells. Its role in donor erythrocytes components


如何引用文章

全文:

详细

The formation of microvesicles by blood cells: monocytes, platelets, granulocytes, erythrocytes and endothelial cells is the most important feature of intercellular interactions. Red blood cells form microvesicles to remove damaged cell components, such as oxidized hemoglobin and damaged membrane components, and thus extend their functioning. Two hypotheses have been put forward for the formation of microvesicles: programmed cell death (eryptosis) and clustering of the band 3 protein as a result of disruption of intercellular interactions. In the process of eryptosis, damage to hemoglobin and a change in the pathways of phosphorylation of membrane proteins, primarily protein of strip 3, weaken the strong bonds between the lipid bilayer and the cytoskeleton, which is accompanied by the transformation of the membrane, the formation of protrusions and their transformation into microvesicles. It was found that the formation of microvesicles by red blood cells is impaired in patients suffering from various pathologies of red blood cells: sickle cell anemia, glucose-6-dehydrogenase deficiency, spherocytosis, and malaria. Studies of the last decade show that a violation of the interaction between the membrane and the cytoskeleton is probably the main mechanism, since it is confirmed by data obtained in the study of structural changes in red blood cells of donor hemocomponents stored in a blood bank. Currently, studies on the effect of microvesicles on the safety of erythrocyte-containing blood components have become widespread. A discussion was resumed on the relationship between the number of accumulated microvesicles in blood components and the effectiveness of donor components for patients during transfusion, depending on the shelf life of the components. Detailed data on proteomic, lipidomic and immunogenic comparisons of microvesicles obtained from various sources are convincing in the identification of trigger stimuli causing the generation of microvesicles. Elucidation of the contribution of microvesicles obtained from red blood cells to inflammation, thrombosis, and autoimmune reactions confirms the need to further study the mechanisms and consequences of the generation of microvesicles by red blood cells of donor components used for transfusion medicine.

作者简介

V Vaschenko

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

V Vilyaninov

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

L Skripaj

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

E Sorokoletova

Военно-медицинская академия им. С.М. Кирова

Email: meda-nio@mil.ru
Санкт-Петербург

参考

  1. Ващенко, В.И. Эриптоз (квазиапоптоз) эритроцитов человека и его роль в лекарственной терапии / В.И. Ващенко, В.Н. Вильянинов // Обзоры клин. фарм. лекарст. терапии. - 2019. - № 3. - C. 5-38.
  2. Зубаиров, Д.М. Микровезикулы в крови. Функции и их роль в тромбообразовании / Д.М. Зубаиров, Л.Д. Зубаирова. - М.: ГЭОТАР-Медиа, 2009. - 168 c.
  3. Almizraq, R.J. Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method / R.J. Almizraq [et al.] // Transfus. Med. Hemother. - 2018. - Vol. 45. - P. 185-193.
  4. Arashiki, N. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence / N. Arashiki [et al.] // Biochemistry. - 2013. - Vol. 52. - P. 5760-5769.
  5. Burnouf, T. An overview of the role of microparticles/microvesicles in blood components: Are they clinically or harmful? / T. Burnouf [et al.] // Transfus. Apher. Scien. - 2015. - Vol. 53. - P. 137-145.
  6. Ciana, A. Membrane remodelling and vesicle formation during ageing of human red blood cells / A. Ciana [et al.] // Cell. Physiol. Biochem. - 2017. - Vol. 42. - P. 1127-1138.
  7. Cluitmans, J.C. Red blood cell homeostasis: pharmacological interventions to explore biochemical, morphological and mechanical properties / J.C. Cluitmans [et al.] // Front. Mol. Biosci. - 2016. - Vol. 3. - P. 1-11.
  8. D’Alessandro, A. Omics markers of the red cell storage lesion and metabolic linkage / A. D’Alessandro [et al.] // Blood Transfus. - 2017. - Vol. 15. - P. 137-144.
  9. Dinkla, S. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane / S. Dinkla [et al.] // BBA Clin. - 2016. - Vol. 5. - P. 186-192.
  10. Distler, J.H. Microparticles as mediators of cellular cross-talk in inflammatory disease / J.H. Distler [et al.] // Autoimmunity. - 2006. - Vol. 39. - P. 683-690.
  11. Ferru, E. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase / E. Ferru [et al.] // Haematologica. - 2014. - Vol. 99. - P. 570-578.
  12. Harisa, G.I. Erythrocyte nanovesicles: biogenesis, biological roles and therapeutic approach erythrocyte nanovesicles / G.I. Harisa [et al.] // Saudi Pharm. J. - 2017. - Vol. 25. - P. 8-17.
  13. Koch, C.G. Real age: red blood cell aging during storage / C.G. Koch [et al.] // Ann. Thorac. Surg. - 2019. - Vol. 107. - P. 973-980.
  14. Kostova, E.B. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation / E.B. Kostova [et al.] // Biosci. Rep. - 2015. - Vol. 35. - P. 1-16.
  15. Leal, J.K.F. Red blood cell homeostasis: mechanisms and effects of microvesicle generation in health and disease / J.K.F. Leal [et al.] // Front Physiol. - 2018. - Vol. 9. - P. 1-7.
  16. Luten, M. Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods / M. Luten [et al.] // Transfusion. - 2008. - Vol. 48. - P. 1478-1485.
  17. Qadri, S.M. Eriptosis in health and disease: A paradigm shift towards understanding the (patho) physiological implications of programmed cell death of erythrocytes / S.M. Qadri [et al.] // Blood Rev. - 2017. - Vol. 31. - P. 349-361.
  18. Roussel, C. Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion / C. Roussel [et al.] // Transfusion. - 2017. - Vol. 57. - P. 1007-1018.
  19. Rubin, O. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation / O. Rubin [et al.] // Transfusion. - 2013. - Vol. 53. - P. 1744-1754.
  20. Salzer, U. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin / U. Salzer [et al.] // Transfusion. - 2008. - Vol. 48. - P. 451-462.
  21. Spinella, P.C. Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries / P.C. Spinella [et al.] // Crit. Care. - 2009. - Vol. 13. - P. 1-11.
  22. Tissot, J.D. The storage lesion: From past to future / J.D. Tissot [et al.] // Transfus. Clin. Biol. - 2017. - Vol. 24. - P. 277-284.
  23. Willekens, F.L. Erythrocyte vesiculation: a self-protective mechanism? / F.L. Willekens [et al.] // Br. J. Haematol. - 2008. - Vol. 141. - P. 549-556.
  24. Wither, M. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells / M. Wither [et al.] // Transfusion. - 2016. - Vol. 56. - P. 421-426.
  25. Zimring, J.C. Established and theoretical factors to consider in assessing the red cell storage lesion / J.C. Zimring // Blood. - 2015. - Vol. 125. - P. 2185-2190.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Vaschenko V.I., Vilyaninov V.N., Skripaj L.A., Sorokoletova E.F., 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».