Role of inflammation in the development of atrial fibrillation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study analyzed and demonstrated the role of inflammatory mechanisms and inflammation markers in the development of atrial fibrillation, their significance in the structural and electrical remodeling of the atria, and pharmacological agents that can be effective in reducing inflammation. Data were obtained from the analysis of retrospective and prospective studies and systematic reviews. The available domestic and foreign scientific studies indexed in PubMed, Google Scholar, and eLibrary.ru were analyzed. Atrial fibrillation is one of the most common arrhythmias in adults and is associated with many complications and mortality. The pathophysiological mechanisms of this arrhythmia remain completely unclear, and their search continues at the molecular level. Atrial fibrillation causes electrical and structural changes in the myocardium, which lead to further pathological transformations of the heart, and some of them are associated with inflammation, which has been demonstrated in studies on an experimental model and heart tissues of patients with this rhythm disorder. Whether inflammation is the cause of the development of this arrhythmia or its consequence is not clearly understood. Statins, corticosteroids, colchicine, genetically engineered biological drugs, which have a specific application point in the inflammatory cascade, and some other drugs, such as anticoagulants, polyunsaturated fatty acids, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists, also take place in the treatment of atrial fibrillation. However, their applications are not clearly specified. Currently, research continuously aims at finding effective ways to prevent and treat this nosology. Thus, promising ways to reduce the role of inflammation in the occurrence, recurrence, diagnosis, and treatment of atrial fibrillation are relevant in the development of precision medicine.

About the authors

Evgeniy V. Kryukov

Kirov Military Medical Academy

Email: gogil01@mail.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441
Scopus Author ID: 57208311867

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Dmitriy V. Cherkashin

Kirov Military Medical Academy

Email: gogil01@mail.ru
ORCID iD: 0000-0003-1363-6860
SPIN-code: 2781-9507

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Egor E. Kruzhalin

Kirov Military Medical Academy

Author for correspondence.
Email: gogil01@mail.ru
ORCID iD: 0000-0002-8693-1281
SPIN-code: 5994-9914

resident

Russian Federation, Saint Petersburg

Gennady G. Kutelev

Kirov Military Medical Academy

Email: gogil01@mail.ru
ORCID iD: 0000-0002-6489-9938
SPIN-code: 5139-8511

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Andrey E. Alanicev

Kirov Military Medical Academy

Email: gogil01@mail.ru
ORCID iD: 0000-0002-4135-5815
SPIN-code: 6223-7758

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

References

  1. Chugh S, Havmoeller R, Narayanan K, et al. Worldwide Epidemiology of Atrial Fibrillation. Circulation. 2014;129(8):837–847. doi: 10.1161/CIRCULATIONAHA.113.005119
  2. Ziegler L, Hedin U, Gottsäter A. Circulating Biomarkers in Lower Extremity Artery Disease. Eur Cardiol Rev. 2022;17:e09. doi: 10.15420/ecr.2021.58
  3. Wu N, Xu B, Xiang Y, et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: A meta-analysis. Int J Cardiol. 2013;169(10):62–72. doi: 10.1016/j.ijcard.2013.08.078
  4. Shan J, Xie W, Betzenhauser M, et al. Calcium Leak Through Ryanodine Receptors Leads to Atrial Fibrillation in 3 Mouse Models of Catecholaminergic Polymorphic Ventricular Tachycardia. Circ Res. 2012;111(6):708–717. doi: 10.1161/CIRCRESAHA.112.273342
  5. Charitakis E, Tsartsalis D, Korela D, et al. Risk and protective factors for atrial fibrillation after cardiac surgery and valvular interventions: an umbrella review of meta-analyses. Open Heart. 2022;9(2):e002074. doi: 10.1136/openhrt-2022-002074
  6. Chung M, Martin D, Sprecher D, et al. C-Reactive Protein Elevation in Patients With Atrial Arrhythmias. Circulation. 2001;104(24):2886–2891. doi: 10.1161/hc4901.101760
  7. Xu Q, Bo L, Hu J, et al. High mobility group box 1 was associated with thrombosis in patients with atrial fibrillation. Medicine. 2018;97(13):e0132. doi: 10.1097/MD.0000000000010132
  8. Scott L, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol. 2019;287:195–200. doi: 10.1016/j.ijcard.2018.10.020
  9. Bruins P, Te V, Yazdanbakhsh A, et al. Activation of the Complement System During and After Cardiopulmonary Bypass Surgery. Circulation. 1997;96(10):3542–3548. doi: 10.1161/01.CIR.96.10.3542
  10. Maixet J-M, PaganelliI F, Scaglione J, Levy S. Antibodies Against Myosin in Sera of Patients with Idiopathic Paroxysmal Atrial Fibrillation. J Cardiovasc Electrophysiol. 1998;9(6):612–617. doi: 10.1111/j.1540-8167.1998.tb00942.x
  11. Liu T, Li G, Li L, Korantzopoulos P. Association Between C-Reactive Protein and Recurrence of Atrial Fibrillation After Successful Electrical Cardioversion. J Am Coll Cardiol. 2007;49(15):1642–1648. doi: 10.1016/j.jacc.2006.12.042
  12. Kutelev GG, Mirzoev NT, Ivanov VV, et al. Clinical Case of the Novel Coronavirus Infection with the Development of Cardiovascular Complications Against the Background of Comorbid Pathology. Doctor.Ru. 2022;21(6):25–28. (In Russ.). doi: 10.31550/1727-2378-2022-21-6-25-28
  13. Mirzoev NT, Kutelev GG, Pugachev MI, Kireeva EB. Cardiovascular complications in patients after coronavirus DISEASE-2019. Bulletin of the Russian Military Medical Academy. 2022;24(1):199–208. (In Russ.). doi: 10.17816/brmma90733
  14. Aulin J, Hijazi Z, Siegbahn A, et al. Serial measurement of interleukin-6 and risk of mortality in anticoagulated patients with atrial fibrillation: Insights from ARISTOTLE and RE-LY trials. J Thromb Haemost. 2020;18(9):2287–2295. doi: 10.1111/jth.14947
  15. Roldán V, Marín F, Díaz J, et al. High sensitivity cardiac troponin T and interleukin-6 predict adverse cardiovascular events and mortality in anticoagulated patients with atrial fibrillation. J Thromb Haemost. 2012;10(8):1500–1507. doi: 10.1111/j.1538-7836.2012.04812.x
  16. Hak Ł, Myśliwska J, Wickiewicz J, et al. Interleukin-2 as a Predictor of Early Postoperative Atrial Fibrillation After Cardiopulmonary Bypass Graft (CABG). J Interferon Cytokine Res. 2009;29(6):327–332. doi: 10.1089/jir.2008.0082.2906
  17. Rizos I, Tsiodras S, Rigopoulos A, et al. Interleukin-2 serum levels variations in recent onset atrial fibrillation are related with cardioversion outcome. Cytokine. 2007;40(3):157–164. doi: 10.1016/j.cyto.2007.08.013
  18. Cabrera-Bueno F, Medina-Palomo C, Ruiz-Salas A, et al. Serum levels of interleukin-2 predict the recurrence of atrial fibrillation after pulmonary vein ablation. Cytokine. 2015;73(1):74–78. doi: 10.1016/j.cyto.2015.01.026
  19. Wu Z-K, Laurikka J, Vikman S, et al. High Postoperative Interleukin-8 Levels Related to Atrial Fibrillation in Patients Undergoing Coronary Artery Bypass Surgery. World J Surg. 2008;32(12):2643–2649. doi: 10.1007/s00268-008-9758-7
  20. Liuba I, Ahlmroth H, Jonasson L, et al. Source of inflammatory markers in patients with atrial fibrillation. Europace. 2008;10(7): 848–853. doi: 10.1093/europace/eun111
  21. Choi Y-J, Choi E-K, Han K-D, et al. Increased risk of atrial fibrillation in patients with inflammatory bowel disease: A nationwide population-based study. World J Gastroenterol. 2019;25(22): 2788–2798. doi: 10.3748/wjg.v25.i22.2788
  22. Deng H, Xue Y-m, Zhan X-z, et al. Role of tumor necrosis factor-alpha in the pathogenesis of atrial fibrillation. Chin Med J. 2011;124(13):1976–1982.
  23. Nattel S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC: Clin Electrophysiol. 2017;3(5):425–435. doi: 10.1016/j.jacep.2017.03.002
  24. Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm. 2020;17(6): 1043–1049. doi: 10.1016/j.hrthm.2020.01.015
  25. Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res. 2019;115(2):357–372. doi: 10.1093/cvr/cvy224
  26. Doulamis IP, Samanidis G, Tzani A, et al. Proteomic profile of patients with atrial fibrillation undergoing cardiac surgery. Interact Cardiovasc Thor Surg. 2019;28(1):94–101. doi: 10.1093/icvts/ivy210
  27. Bouchot O, Guenancia C, Kahli A, et al. Low Circulating Levels of Growth Differentiation Factor-15 Before Coronary Artery Bypass Surgery May Predict Postoperative Atrial Fibrillation. J Cardiothorac Vasc Anesth. 2015;29(5):1131–1139. doi: 10.1053/j.jvca.2015.01.023
  28. Mikkelsen LF, Nordestgaard BG, Schnohr P, Ellervic C. Increased Ferritin Concentration and Risk of Atrial Fibrillation and Heart Failure in Men and Women: Three Studies of the Danish General Population Including 35799 Individuals. Clin Chem. 2019;65(1):180–188. doi: 10.1373/clinchem.2018.292763
  29. Amar D, Goenka A, Zhang H, et al. Leukocytosis and Increased Risk of Atrial Fibrillation After General Thoracic Surgery. Ann Thorac Surg. 2006;82(3):1057–1061. doi: 10.1016/j.athoracsur.2006.03.103
  30. Lamm G, Auer J, Weber T, et al. Postoperative White Blood Cell Count Predicts Atrial Fibrillation After Cardiac Surgery. J Cardiothorac Vasc Anesth. 2006;20(1):51–56. doi: 10.1053/j.jvca.2005.03.026
  31. Schuessler R, Ishii Y, Khagi Y, et al. The effects of inflammation on heart rate and rhythm in a canine model of cardiac surgery. Heart Rhythm. 2012;9(3):432–439. doi: 10.1016/j.hrthm.2011.09.074
  32. Sun Z, Zhou D, Xie X, et al. Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol. 2016;111(6):63. doi: 10.1007/s00395-016-0584-z
  33. Pena JM, MacFadyen J, Glynn RJ, Ridker PM. High-sensitivity C-reactive protein, statin therapy, and risks of atrial fibrillation: an exploratory analysis of the JUPITER trial. Eur Heart J. 2012;33(4): 531–537. doi: 10.1093/eurheartj/ehr460
  34. Maesen B, Nijs J, Maessen J, et al. Post-operative atrial fibrillation: a maze of mechanisms. Europace. 2012;14(2):159–174. doi: 10.1093/europace/eur208
  35. Reilly SN, Jayaram R, Nahar K, et al. Atrial Sources of Reactive Oxygen Species Vary With the Duration and Substrate of Atrial Fibrillation. Circulation. 2011;124(10):1107–1117. doi: 10.1161/CIRCULATIONAHA.111.029223
  36. Siu C-W, Lau C-P, Tse H-F. Prevention of atrial fibrillation recurrence by statin therapy in patients with lone atrial fibrillation after successful cardioversion. Am J Cardiol. 2003;92(11):1343–1345. doi: 10.1016/j.amjcard.2003.08.023
  37. Young-Xu Y, Jabbour S, Goldberg R, et al. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. Am J Cardiol. 2003;92(12):1379–1383. doi: 10.1016/j.amjcard.2003.08.040
  38. Kim YR, Nam G-B, Han S, et al. Effect of Short-Term Steroid Therapy on Early Recurrence During the Blanking Period After Catheter Ablation of Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2015;8(6):1366–1372. doi: 10.1161/CIRCEP.115.002957
  39. Kim D-R, Won H, Uhm J-S, et al. Comparison of Two Different Doses of Single Bolus Steroid Injection to Prevent Atrial Fibrillation Recurrence after Radiofrequency Catheter Ablation. Yonsei Med J. 2015;56(2):324. doi: 10.3349/ymj.2015.56.2.324
  40. Ho K, Tan JA. Benefits and Risks of Corticosteroid Prophylaxis in Adult Cardiac Surgery. Circulation. 2009;119(14):1853–1866. doi: 10.1161/CIRCULATIONAHA.108.848218
  41. Baker WL, White CM, Kluger J, et al. Effect of perioperative corticosteroid use on the incidence of postcardiothoracic surgery atrial fibrillation and length of stay. Heart Rhythm. 2007;4(4):461–468. doi: 10.1016/j.hrthm.2006.11.026
  42. Koyama T, Tada H, Sekiguchi Y, et al. Prevention of Atrial Fibrillation Recurrence With Corticosteroids After Radiofrequency Catheter Ablation. J Am Coll Cardiol. 2010;56(18):1463–1472. doi: 10.1016/j.jacc.2010.04.057
  43. Won H, Kim J-Y, Shim J, et al. Effect of a Single Bolus Injection of Low-Dose Hydrocortisone for Prevention of Atrial Fibrillation Recurrence After Radiofrequency Catheter Ablation. Circ J. 2013;77(1):53–59. doi: 10.1253/circj.CJ-12-0728
  44. Iskandar S, Reddy M, Afzal MR, et al. Use of Oral Steroid and its Effects on Atrial Fibrillation Recurrence and Inflammatory Cytokines Post Ablation — The Steroid AF Study. J Atr Fibrillation. 2017;9(5):1604. doi: 10.4022/jafib.1604
  45. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018;269:262–271. doi: 10.1016/j.atherosclerosis.2017.12.027
  46. Bouabdallaoui N, Tardif J-C, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020;41(42):4092–4099. doi: 10.1093/eurheartj/ehaa659
  47. Hennessy T, Soh L, Bowman M, et al. The Low Dose Colchicine after Myocardial Infarction (LoDoCo-MI) study: A pilot randomized placebo controlled trial of colchicine following acute myocardial infarction. Am Heart J. 2019;215:62–69. doi: 10.1016/j.ahj.2019.06.003
  48. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119–1131. doi: 10.1056/NEJMoa1707914
  49. January S, Pottebaum A, Raymer D, Lavine K. Tocilizumab for Antibody-Mediated Rejection in the Setting of Cardiac Allograft Vasculopathy. J Heart Lung Transplant. 2019;38(4):S38–S39. doi: 10.1016/j.healun.2019.01.079
  50. Ren M, Li X, Hao L, Zhong J. Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target? Ann Med. 2015;47(4):316–324. doi: 10.3109/07853890.2015.1042030
  51. Aschar-Sobbi R, Izaddoustdar F, Korogyi AS, et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat Commun. 2015;6(1):6018. doi: 10.1038/ncomms7018
  52. Katoh H, Nozue T, Michishita I. Anti-inflammatory effect of factor-Xa inhibitors in Japanese patients with atrial fibrillation. Heart and Vessels. 2017;32(9):1130–1136. doi: 10.1007/s00380-017-0962-y
  53. Mozaffarian D, Wu JHY, de Oliveira Otto MC, et al. Fish Oil and Post-Operative Atrial Fibrillation. J Am Coll Cardiol. 2013;61(21): 2194–2196. doi: 10.1016/j.jacc.2013.02.045
  54. Nigam A, Talajic M, Roy D, et al. Fish Oil for the Reduction of Atrial Fibrillation Recurrence, Inflammation, and Oxidative Stress. J Am Coll Cardiol. 2014;64(14):1441–1448. doi: 10.1016/j.jacc.2014.07.956
  55. Gencer B, Djousse L, Al-Ramady OT, et al. Effect of Long-Term Marine ω-3 Fatty Acids Supplementation on the Risk of Atrial Fibrillation in Randomized Controlled Trials of Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Circulation. 2021;144(25):1981–1990. doi: 10.1161/CIRCULATIONAHA.121.055654
  56. Jansen HJ, Mackasey M, Moghtadaei M, et al. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J Mol Cell Cardiol. 2018;124:12–25. doi: 10.1016/j.yjmcc.2018.09.011
  57. Schneider MP, Hua TA, Böhm M, et al. Prevention of Atrial Fibrillation by Renin-Angiotensin System Inhibition. J Am Coll Cardiol. 2010;55(21):2299–2307. doi: 10.1016/j.jacc.2010.01.043
  58. Tang M, Chen Y, Sun F, Yan L. The Dose-Dependent Effects of Spironolactone on TGF- β1 Expression and the Vulnerability to Atrial Fibrillation in Spontaneously Hypertensive Rats. Cardiol Res Pract. 2021;2021:9924381. doi: 10.1155/2021/9924381
  59. Chequel M, Ollitrault P, Saloux E, et al. Preoperative Plasma Aldosterone Levels and Postoperative Atrial Fibrillation Occurrence Following Cardiac Surgery: A Review of Literature and Design of the ALDO-POAF Study (ALDOsterone for Prediction of Post-Operative Atrial Fibrillation). Curr Clin Pharmacol. 2016;11(3):150–158. doi: 10.2174/1574884711666160714162128
  60. Alexandre J, Ollitrault P, Fischer M-O, et al. Spironolactone and perioperative atrial fibrillation occurrence in cardiac surgery patients: Rationale and design of the ALDOCURE trial. Am Heart J. 2019;214:88–96. doi: 10.1016/j.ahj.2019.04.023

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Kryukov E.V., Cherkashin D.V., Kruzhalin E.E., Kutelev G.G., Alanicev A.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies