TsEREBRAL'NYE NARUShENIYa OBMENA ZhELEZA KAK OSNOVA RAZVITIYa I PROGRESSIROVANIYa NEYRODEGENERATIVNYKh ZABOLEVANIY


Cite item

Full Text

Abstract

About the authors

I V Litvinenko

ВМедА им. С.М. Кирова МО РФ

Санкт-Петербург

I V Krasakov

ВЦЭРМ им. А.М. Никифорова МЧС РФ

Санкт-Петербург

A G Trufanov

ВМедА им. С.М. Кирова МО РФ

Санкт-Петербург

References

  1. цветаева, Н.В. основы регуляции обмена железа / Н.В. цветаева, А.А. Левина, Ю.И. Мамукова // Клиническая онкогемато- логия. Фундаментальные исследования и клиническая практика. - 2010. - №3. - С. 278 - 283.
  2. Ward, R.J. The role of iron in brain ageing and neurodegenerative disorders / R.J. Ward, F.A. Zucca, J.H. Duyn, et al. // Lancet Neurol. - 2014. - №13(10). - P. 1045 - 1060. НАУчНЫЕ СТАТьИ
  3. Lee, P. The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobu- lin-deficient hepatocytes / P. Lee, H. Peng, T. Gelbart, E.Beutler // Proc Natl Acad Sci USA. - 2004. - №101. - P. 9263-9265.
  4. Urrutia, P. P. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells / P. Urrutia, P. Aguirre, A. Esparza, et al. // J Neurochem. - 2013. - №126. - P. 541- 549.
  5. Farrall, A.J. Blood-brain barrier: ageing and microvascular disease--systematic review and meta-analysis / A.J. Farrall, J.M.Wardlaw // Neurobiol Aging. - 2009. - №30. - P. 337 - 352.
  6. Killilea, D.W. Iron accumulation during cellular senescence / D.W. Killilea, S.L. Wong, H.S. Cahaya, et al. // Ann N Y Acad Sci. - 2004. - №1019. - С 365 - 367.
  7. Xu, J. Impaired iron status in aging research / J. Xu, Z. Jia, M.D. Knutson, et al. // Int J Mol Sci. - 2012. - №13. - P. 2368 - 2386.
  8. Ramos, P. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes / P. Ramos, A. Santos, N.R. Pinto, et al. // J Trace Elem Med Biol. - 2014. - №28. - P.13-17. 9.House,E.Aluminium,ironandcopperinhumanbraintissuesdonatedtotheMedicalResearchCouncil’sCognitiveFunctionandAgeingStudy/ E. House, M. Esiri, G. Forster, et al. // Metallomics. - 2012. №4. - P. 56-65.
  9. Bilgic, B. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping / B. Bilgic, A. Pfef- ferbaum, T. Rohlfing // Neuroimage. - 2012. - №59. - P. 2625-35.
  10. Zecca, L. L. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals / Zecca, C. Bellei, P. Costi, et al. // Proc Natl Acad Sci USA. - 2008. - №105. - P. 17567-17572.
  11. Block, M.L. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms / M.L. Block, L. Zecca, J.S. Hong // Nat Rev Neurosci. - 2007. - №8. - P. 57-69.
  12. Connor, J.R. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains / J.R. Connor, S.L. Menzies, S.M. St Martin, E.J. Mufson // J Neurosci Res. - 1990. - №27. - P. 595-611.
  13. Crichton, RR. Ward Metal based neurodegeneration: from molecular mechanisms to therapeutic strategies. 2. / R.R. Crichton, R.J. Chichester // J Wiley & Sons. - 2014.
  14. Melis, J.P. Oxidative DNA damage and nucleotide excision repair / J.P. Melis, H. van Steeg, M. Luijten // Antioxid Redox Signal. - 2013. - №18. - P. 2409 - 2419.
  15. Kwok, J.B. Role of epigenetics in Alzheimer’s and Parkinson’s disease // Epigenomics. - 2010. - №2. - P. 671 - 682.
  16. Perluigi, M. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies / M. Perluigi, R. Coccia, D.A. Butterfield // Antioxid Redox Signal. - 2012. - №17. - P. 1590 - 1609.
  17. Horowitz, M.P. Mitochondrial iron metabolism and its role in neurodegeneration / M.P. Horowitz, J.T. Greenamyre // J Alzheimers Dis. - 2010. - №20(suppl 2). - P. 551 - 568.
  18. Paris, I. Dopamine-dependent iron toxicity in cells derived from rat hypothalamus / I. Paris, P. Martinez-Alvarado, S. Cбrdenas, et al. // Chem Res Toxicol. - 2005. - №18. - P. 415 - 419.
  19. Di Monte, D.A. Iron-mediated bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures / D.A. Di Monte, H.M. Schipper, S. Hetts, J.W. Langston // Glia. - 1995. - №15. - P. 203 - 206.
  20. Yamamoto, A. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: impli- cations in the formation of neurofibrillary tangles of Alzheimer’s disease / A. Yamamoto, R.W. Shin, K. Hasegawa, et al. // J Neurochem. - 2002. - № 82. - P. 1137 - 1147.
  21. Ott, M. Mitochondria, oxidative stress and cell death / Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. // Apoptosis. - 2007. - №12. - P. 913 - 922.
  22. Dixon, S.J. Ferroptosis: an iron-dependent form of nonapoptotic cell death / S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al. // Cell. - 2012. - №149. - P. 1060-1072.
  23. Hirsch, E.C. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis / E.C. Hirsch, J.P. Brandel, P. Galle, et al. // J Neurochem. - 1991. - № 56. - P. 446 - 451.
  24. Grцger, A. Does structural neuroimaging reveal a disturbance of iron metabolism in Parkinson’s disease? Implications from MRI and TCS studies / A. Grцger, D. Berg // J Neural Transm. - 2012. - №119. - P. 1523 - 1528.
  25. Kortekaas, R. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo / R. Kortekaas, K.L. Leenders, J.C. van Oostrom, et al. // Ann Neurol. - 2005. - №57. - P. 176-79.
  26. Conde, J.R. Microglia in the aging brain / J.R. Conde, W.J. Streit // J Neuropathol Exp Neurol. - 2006. - №65. - P. 199 - 203.
  27. Faucheux, B.A. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease / B.A. Fau- cheux, N. Nillesse, P. Damier, et al. // Proc Natl Acad Sci USA. - 1995. - №92. - P. 9603 - 9607.
  28. Salazar, J. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease / J. Sala- zar, N. Mena, S. Hunot, et al. // Proc Natl Acad Sci USA. - 2008. - №105. - P. 18578-18583.
  29. Mastroberardino, P.G. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. / P.G. Mastroberardino, E.K. Hoffman, M.P. Horowitz, et al. // Neurobiol Dis. - 2009. - №34. - P. 417 - 431.
  30. Guerreiro, R.J. Association of HFE common mutations with Parkinson’s disease, Alzheimer’s disease and mild cognitive impairment in a Portuguese cohort / R.J. Guerreiro, J.M. Bras, I. Santana, et al. // BMC Neurol. - 2006. - №6. - 24.
  31. Uversky, V.N. Metal-triggered structural transformations, aggregation, and fibrillation of human alphasynuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure / V.N. Uversky, J. Li, A.L. Fink // J Biol Chem. - 2001. - №276. P. 44284 - 44296.
  32. Connor, J.R. A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains / J.R. Connor, B.S. Snyder, P. Arosio, D.A. Loeffler, P. LeWitt // J Neurochem. - 1995. - №65. - P. 717 - 724.
  33. Castellani, R.J. Sequestration of iron by Lewy bodies in Parkinson’s disease / R.J. Castellani, S.L. Siedlak, G. Perry, M.A. Smith // Acta Neuropathol. - 2000. - №100. - P. 111 - 114.
  34. Faucheux, B.A. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease / B.A. Faucheux, M.E. Martin, C. Beaumont, et al. // J Neurochem. - 2002. - №83. - P. 320-330. НАУчНЫЕ СТАТьИ
  35. Faucheux, B.A. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease / B.A. Faucheux, M.E. Martin, C. Beaumont, et al. // J Neurochem. - 2003. - №86. - P. 1142 - 1148.
  36. Langston, J.W. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine exposure / J.W. Langston, L.S. Forno, J. Tetrud // Ann Neurol. - 1999. - №46. - P 598 - 605.
  37. Zhang, W. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease / W. Zhang, K. Phillips, A.R. Wielgus, et al. // Neurotox Res. - 2011. - № 19. P. 63 - 72.
  38. Lewis, M.M. Higher iron in the red nucleus marks Parkinson’s dyskinesia / M.M. Lewis, G. Du, M. Kidacki, et al. // Neurobiol Aging. - 2013. - №34. - P 1497 - 1503.
  39. Yu, X. Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease / X. Yu, T. Du, N. Song, et al. // Neurology. - 2013. - №80. - P. 492 - 495.
  40. Olivieri, S. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention / S. Olivieri, A. Conti, S. Iannaccone, et al. // J Neurosci. - 2011. - № 31. - P. 18568 - 18577.
  41. Boll, M.C. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease / M.C. Boll, J. Sotelo, E. Otero, et al. // Neurosci Lett. 1999; 265:155-58.
  42. Hochstrasser, H. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease / H. Hochstrasser, P. Bauer, U. Walter, et al. // Neurology. - 2004. - №63. - P 1912 - 1917.
  43. Song, N. Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease / N. Song, J. Wang, H. Jiang, J. Xie // Free Radic Biol Med. - 2010. - №48. - P. 332 - 341.
  44. Miyake, Y. Dietary intake of metals and risk of Parkinson’s disease: a case-control study in Japan / Y. Miyake, K. Tanaka, W. Fukushima, et al. // J Neurol Sci. - 2011. - №306. - P. 98 - 102.
  45. Levenson, C.W. Role of dietary iron restriction in a mouse model of Parkinson’s disease / C.W. Levenson, R.G. Cutler, B. Ladenheim, et al. // Exp Neurol. - 2004. -№190. - P. 506 - 514.
  46. Cho, Z.H. Direct visualization of Parkinson’s disease by in vivo human brain imaging using 7.0T magnetic resonance imaging / Z.H. Cho, S.H. Oh, J.M. Kim, et al. // Mov Disord. - 2011. - №26. - 713 - 718.
  47. Martin, W.R. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status / W.R. Martin, M. Wieler, M. Gee // Neurology. - 2008. - №70. - P. 1411 - 1417.
  48. Boelmans, K. Brain iron deposition fingerprints in Parkinson’s disease and progressive supranuclear palsy / K. Boelmans, B. Holst, M. Hackius, et al. // Mov Disord. - 2012. - №27. - P. 421 - 427.
  49. Sulzer, D. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease / D. Sulzer, C. Cassidy, G. Horga // NPJ Parkinsons Dis. - 2018. - №4. - P.11.
  50. Tang, M.Y. GRE T2* - weighted MRI: principles and clinical applications / M.Y. Tang, T.W. Chen, X.M. Zhang et al. // Biomed Res Int. - 2014. - № 312142.
  51. Shams, S. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study / S, Shams, J. Martola, L. Cavallin, et al. // AJNR Am J Neuroradiol. - 2015. - №36(6). - P. 1089-1095.
  52. Ni, W. Comparison of R2’ measurement methods in the normal brain at 3 Tesla / W. Ni, T. Christen, Z. Zun, G. Zaharchuk, et al. // Magn Reson Med. - 2015. - №73(3). - P. 1228 - 1236.
  53. Liu, C. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain / C. Liu, W. Li, K.A. Tong, et al. // Magn Reson Imaging. - 2015. - №42(1). - 23-41.
  54. Wang, R.R. Stability of R2* and quantitative susceptibility mapping of the brain tissue in a large scale multi-center study / Wang, G. Xie, M. Zhai, et al. // Sci Rep. - 2017. - № 7:45261
  55. Bouwmans, A.E. Transcranial sonography for the discrimination of idiopathic Parkinson’s disease from the atypical parkinsonian syndromes / A.E. Bouwmans, A.M. Vlaar, K. Srulijes, et al. // Int Rev Neurobiol. - 2010. - №90. - P.121 - 146.
  56. Zecca, L. In vivo detection of iron and Neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage / L. Zecca, D. Berg, T. Arzberger, et al. // Mov Disord. - 2005. - № 20. - P. 1278 - 1285.
  57. Roberts, B.R. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease / B.R. Roberts, T.M. Ryan, A.I. Bush, et al. // J Neurochem. - 2012. - №120(suppl 1). - P. 149 - 166.
  58. Sayre, L.M. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals / L.M. Sayre, G. Perry, P.L. Harris, et al. // J Neurochem. - 2000. - № 74. - P. 270 - 279.
  59. Perry, G. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? / G. Perry, A. Nunomura, K. Hirai, et al. // Free Radic Biol Med. - 2002. - №33. - P. 1475 - 1479.
  60. Altamura, S. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis / S. Altamura, M.U. Muckenthaler // J Alzheimers Dis. - 2009. - №16. - P. 879 - 895.
  61. Guillemot, J. Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin / J. Guillemot, M. Canuel, R. Essalmani, et al. // Hepatology. - 2013. - №57. - P. 2514 - 2524.
  62. Rogers, J.T. An iron-responsive element type II in the 5’-untranslated region of the Alzheimer’s amyloid precursor protein transcript / J.T. Rogers, J.D. Randall, C.M. Cahill, et al. // J Biol Chem. - 2002. - № 277. - P. 45518 - 45528.
  63. Lei, P. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export / P. Lei, S. Ayton, D.I. Finkelstein, et al. // Nat Med. - 2012. - №18. - P. 291 - 295.
  64. Sparacia, G. Assessment of cerebral microbleeds by susceptibility-weighted imaging in Alzheimer’s disease patients: A neuroimaging biomarker of the disease / G. Sparacia, F. Agnello, G. La Tona, et al. // Neuroradiol J. - 2017. - №30(4). - P. 330 -335.
  65. Ayton, S. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline / Ayton S., Fazlollahi A., Bourgeat P // Brain. - 2017. - №140(8). - P. 2112 - 2119.
  66. Ropele, S. MRI assessment of iron deposition in multiple sclerosis / S. Ropele, W. de Graaf, M. Khalil, et al. // J Magn Reson Imaging. - 2011. - №34. - P.13 - 21.
  67. Lassmann, H. Progressive multiple sclerosis: pathology and pathogenesis / H. Lassmann, J. van Horssen, D. Mahad // Nat Rev Neurol. - 2012. - №8. P. 647 - 656.
  68. Williams, R. Pathogenic implications of iron accumulation in multiple sclerosis. R. Williams, C. L. Buchheit, N.E. Berman, et al. // J Neurochem. - 2012. - №120. - P. 7 - 25.
  69. Yao, B. Chronic multiple sclerosis lesions: characterization with high-field-strength MR imaging / B. Yao, F. Bagnato, E. Matsuura, et al. // Radiology. - 2012. - № 262. - P. 206 - 215.
  70. Mehindate, K. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis / K. Mehindate, D.J. Sahlas, D. Frankel, et al. // J Neurochem. - 2001. - №77. - P. 1386 - 1395.
  71. Moreau, C. Iron as a therapeutic target for Parkinson’s disease / C. Moreau, J.A. Duce, O. Rascol, et al. // Mov Disord. - 2018. - №33(4). - P. 568 - 574.
  72. Cabantchik, Z.I. Regional siderosis: a new challenge for iron chelation therapy / Z.I. Cabantchik, A. Munnich, M.B. Youdim, D. Devos // Front Pharmacol. - 2013. - № 4. - P. 167.
  73. Devos, D. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease / D. Devos, C. Moreau, J.C. Devedjian, et al. // Antioxid Redox. - Signal 2014. - №21. - P. 195-210.
  74. Martin-Bastida, A. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease / A. Martin-Bastida, R. Ward, R. Newbould, et al. // Sci Rep. - 2017. - №7. - P. 1398.

Copyright (c) 2018 Litvinenko I.V., Krasakov I.V., Trufanov A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies